MARKOV-TYPE INEQUALITIES ON CERTAIN
IRRATIONAL ARCS AND DOMAINS
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ABSTRACT. Let P denote the set of real algebraic polynomials of d variables and of total
degree at most n. For a compact set K C R? set

I[Pl = sup |P(z)].
rzeK
Then the Markov factors on K are defined by
My (K) = max{||DwP||K c PePl Pk <1, we sd—l} .

(Here, as usual, S9=1 stands for the Euclidean unit sphere in Rd.) Furthermore, given a
smooth curve I' C R?, we denote by D P the tangential derivative of P along I' (T is the
unit tangent to I'). Correspondingly, consider the tangential Markov factor of I' given by

MI(T) i= max {||DrPlr: PePL, |[Pr<1}.

Let T'q := {(z,z%) : 0 <a <1} . We prove that for every irrational number o > 0 there are
constants A, B > 1 depending only on « such that

A" < MT(T,) < B

for every sufficiently large n.
Our second result presents some new bounds for M, (), where

1
Qa:—{(fr,y)eRz: 0<z<1; Exo‘ﬁyﬁ%a}

(d =2, > 1). We show that for every o > 1 there exists a constant ¢ > 0 depending only

on « such that
Mn(Qa) S nclogn-
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1. INTRODUCTION

Recent years have seen an increased activity in the study of Markov-Bernstein type
inequalities for the derivatives of multivariate polynomials. These inequalities provide
estimates on the size of the directional derivatives D, P of multivariate polynomials P
under some normalization. Let P2 denote the set of real algebraic polynomials of d variables
and of total degree at most n. For a compact set K C R? set

|1P|| = sup |P(z)].
zeK

Then the Markov factors on K are defined by
M, (K) :=max {||D,P|x: PePL |P|x <1, weS"'}.

(Here, as usual, S9~! stands for the Eucledean unit sphere in R¢.) Furthermore, given a
smooth curve I' C R?, we denote by D7 P the tangential derivative of P along I' (T is the
unit tangent to I'). Correspondingly, consider the tangential Markov factor of I' given by

MI(T) :=max{||DrP|r: PP, |P|r<1}.

It was shown by Bos et. al. [3] that M (T) is of order n? when T is algebraic. In another
paper [4] the authors show that for the curve

Ty :i={(z,2*): 0<2<1}CR?

with a rational exponent o = p/q > 1 (p and q are relative primes), M1 (T,) is of precise
order n?¢, while for an irrational exponent o > 1, M (T,) grows faster than any power
of n. In this paper we shall generalize the latter statement by showing that M7 (T,) is of
exponential order of magnitude for irrational exponents o > 0.

The Markov factors M, (K) of a domain K C R? have been widely investigated when
K admits a polynomial parametrization (see [2], [7], [6]) or an analytic parametrization
(see [5],[8]), that is, points of K can be connected to the interior of K by polynomial or
analytic curves, respectively. For instance, if

1
Qa::{(x,y)€R2: 0<z<1; Ql‘aﬁyﬁm‘a}

(d =2,a > 1), then it follows from Theorem 2 in [6] that for a rational exponent a = p/q
(p and g are positive integers) we have M,,(Q,) = O(n??). The method of analytic (or
polynomial) parametrization does not apply to €, when a > 1 is irrational. Using a new
approach we shall show below that for irrational exponents a > 1 we have

Mn(Qa) S nclogn

with some constant ¢ > 1 depending only on «. The growth of this upper bound is faster
than polynomial growth (which holds for rational exponents «/), but substantially smaller
than exponential growth which will be shown to hold for M (T,) when a > 0 is irrational.



2. NEW RESULTS

Our first result shows that the magnitude of MI (T,,) is of exponential order when a > 0
is irrational.

Theorem 2.1. For every irrational number o > 0 there are constants A, B > 1 depending
only on a such that
A" < MT(T,) < B™.

By using a different method the following local version of Theorem 2.1 is obtained in
[9]: for every irrational number « > 0 there are constants A, B > 1 depending only on «
such that

A" <max {|DrP(0,0)]: Pe P2, |P|r, <1} <B",

where Dy P(0,0) is the tangential derivative of P along I',, at (0,0). This result was then
built in Theorem 2 of [9] where the dependence on « is not discussed as explicitly as it is
seen from our demonstrations here.

Our second result presents some new bounds for M, ().

Theorem 2.2. For every a > 1 there exists a constant ¢ > 0 depending only on o such
that
Mn(Qa> < nclogn‘

The question of verifying lower bounds for M, (2,) faster than polynomial order of
magnitude remains open. (Applying Theorem 2 in [6] yields M, (,) > cn?®.) In this
respect we conjecture that for every irrational exponent o > 1 we have

I log M,,(Q2e)
imsup ———— = o0,
n—00 logn
that is, M,,(€2,) increases faster than any power of n. Our next theorem shows that the
above conjecture would provide a best possible lower bound, that is, a stronger lower bound
cannot hold, in general.

Theorem 2.3. Let (3,) be an arbitrary increasing sequence of positive numbers tending

to co. Then there exists an irrational number o > 1 so that

lim inf M,, (Qq)n """ < .

n—oo

3. LEMMAS FOR THEOREM 2.1

Our first lemma is the “Distance Formula” (see part c| of E.2 on page 177 in [1]).

Lemma 3.1. Let puj, 7 = 0,1,...,m, and pu be distinct real numbers greater than _—

2
Then
_ 1 ﬁ [ — g
\/1+2/J/j:0,u+,uj+1.

3

m
min ||z — g bzt
b;eC -

7=0

L4[0,1]



Let @ > 1 be an irrational number. For a fixed n € Nlet v:=v(n) = (n+1)? — 1. We
define the numbers \g < A\; < --- < A\, by

(31) {)\0,)\1, 7)\1/} = {]+I€Oé, j,k € {0,1, ,n}}

Note that A\g := 0 and A; := 1. Let M, , := span{z?°, 2 ... 2’} . Associated with
0= X < A <--- <A, defined by (3.1), we define p; := A\j41 —1, 7 =0,1,...,v—1,
where 0 = p1g < py < -++ < pi,—1. We also define M), , := span{z#°,z#1 ...  xt-1}. Note

that if P € M, o, then P’ € M, ,.

Lemma 3.2. Let a > 1 be irrational. Then there is a constant c; > 1 depending only on
a such that if 0 < § < c{", then

IPlloay < 20Pllsy, P EM,,.

To prove Lemma 3.2 we need first the following lemma.

Lemma 3.3. Let o« > 2. Then there is an absolute constant ¢ > 1 such that

a+1 .
|P'(0)] < N Pllpypo,),  PeM,,,.
oa—2
Proof. Let
P'(0
A'V’a = sup |12 (0)

pe’, , I1PllLaj0.0)

Using Lemma 3.1 with {uo, pt1, ..., tm} = { Ao, A2, A3, ..., A} and p = Ay = 1, we obtain

A;7a:2\/§ﬁ“7—+f:2x/§ﬁ(1+

G=o i Jatis My — ot j
:2\/§ﬁ 1+ - 1+ 3 ﬁH 3
—2 ka — 2 j+ka—2
j=3 k=1 j=1k=1
a+1 "3 "3 " 3
< 2v/3 . R
<2V3 5 exp Zj—Z eXp( ka—2>eXp sz+ka—2
71=3 = 1=1k=1
a—+1
< n
_a—QC

with a suitable absolute constant ¢ > 1. [

Proof of Lemma 3.2. First we assume that o > 2. We will use the concept of the Chebyshev

“polynomial” T,_; for a given v-dimensional Chebyshev space, see Section 3.3 of [1], for

instance. Let T, € M) , be the Chebyshev “polynomial” for M), , on [n,1], where

n € (0,1) is chosen so that |T,,_1(0)| =2. So T,,~1 € M, ,, [T, -1l =1, [To—1(1)| = 1,
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and T),_1 equioscillates between —1 and 1 on [, 1] the maximum number of times, that is,
v times. Note that 1,z € M, ,. By Lemma 3.3 we have

a+1
o—2

C’I’l

1T, _1(0)] <

with a suitable absolute constant ¢ > 1. Observe that 1,z € M, , and the fact that 7,4
equioscillates on [n, 1] n + 1 times imply that 7)' ; does not vanish on [0, ], hence |T,_,|
is decreasing on [0,7]. Therefore

a+1

(32) 1=[L-1(0) = Toa(m)] =T,y (@) < nlT, 1 0) < n—— ¢

" x € [0,4].

Now using the fact that the Chebyshev polynomial 7,y € M}, , on [, 1] has the property

T [P (y)|

2> Tyf Y= N
| 1( )| HTI/—]-H["%H PeM’:L,DC HPH["%l]

for every fixed y € [0,7), we can deduce from (3.2) that
1Plj0,1] < 2[|P|ln, 1)

for every P € M! ., where

v,
a—2 _

a+1c

n=

This finishes the case when o > 2.

We show now that the theorem remains valid for all & > 1. To see this we can use the
“Comparison Theorem” formulated by part g] of E.4 on page 120-121 in [1]. Observe that
if « > 1, then

j—i—k(a—l—l)—lﬁ%(]’—l—ka—l)

holds for all nonnegative integers 7 and k. Now let 17 be chosen for o+ 1 > 2 as in the first

part of the proof. Then

77* — na/(a—l)

is a suitable choice for o« > 1. 0O

Lemma 3.4. Let o > 1 be irrational. Then there is a constant ¢ > 1 depending only on
a such that
1P [j0.1) < €"[|Plljo,1)

for every P € M, .
Proof. We need to prove that

(3.3) [P (y)| < 5 [1Pllo,1)
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for every P € M, , and for every y € (0, 1], where ¢3 > 1 is a constant depending only on
a. By Newman’s inequality (see Theorem 6.1.1 on page 276 in [1]), we have

[P’ (y) ZA 1Pllo,1) < 9(n+1)*n(1 + a)et || Pllo

< P
cy e, |P(z)] .

for every P € M, , and y € [¢]",1], where ¢; is a constant coming from Lemma 3.2,
and co > 1 is a suitable constant depending only on «. Since (3.3) is proved for every
y € [e;", 1], we can apply Lemma 3.2 to see that (3.3) is true for all y € [0,1] with ¢}
replaced by 2¢y. [

Lemma 3.5. Let o > 1 be irrational. Then there is an absolute constant ¢ > 0 so that
for some P € M, o with ||Pl[jp,1) = 1 we have

cn
P'(0)| > <—) .
P(0)] > exp (2
Proof. Let

1

inllel/2 — S gaphi—1/2
mlon/ D AT / )

Bl/,a -

L»[0,1]

where the minimum is taken for all
(ag,as,...,a,) R,

By the “Distance Formula” of Lemma 3.1 we have for n > 6

inji_\/ill(HAf—l)

>IHH(” ) = VEew ;Zm

k=2 j=2
> V2exp ((n — 1)2m) > V2exp <3%) .

Therefore there is a Miintz polynomial () of the form
x):xl/Q—f—Zajx’\f’l/Q, aj € R,

such that

1
(3.4) QU0 = 5 e (=35
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Now let P € M, ,, be defined by
P(z) = 2'/%Q(x).

Using the Nikolskii-type inequality of Theorem 6.1.3 on page 281 in [1] and combining it
with (3.4), we obtain that |P’(0)| =1 and

1/2
n

1Ploa < V72 [ D2 | 1QlIkapo < en*/?Vaexp (—5-)
j=1

(0%

with an absolute constant ¢ > 0. O

4. PROOF OF THEOREMS 2.1, 2.2, AND 2.3

Proof of Theorem 2.1. The theorem follows immediately from Lemmas 3.4 and 3.5. Ob-
serve that, by symmetry, we may assume that o > 1. [

Proof of Theorem 2.2. 1t is well-known that for any m € N there exist p,,, ¢ € N with
1 <¢gn<mand

< —.
dm mqm

- 1
(4.1) ’a— Dm

Set T := Pm/Gm- Obviously r,, < 2« if m is sufficiently large. In the sequel let m be so
large that r,, < 2« is satisfied. We shall assume that r,, > « > 1 (the case r,, < « is
analogous). In addition, set

(4.2) m = |6logon| + 1, 6y =0 0™

and
Qas, ={(r,y) €Qy: 0<z<6,}.

Assume that P € P2 and ||P||q, < 1. First we consider the simple case when || D, P||q, =
| Dy, P(x0,y0)| with some (zo,y0) € Qo \ Qa.s,. Clearly, for (zo,y0) € Q4 \ Qa,s5, there
exist horizontal and vertical segments of length at least ¢d passing through (z,y0) and
imbedded into . If we apply Markov’s inequality (see Theorem 5.1.8 on page 233 in [1])
transformed linearly to these line segments, we obtain that

2

OP oP
+ )a—y(l’o,yo) <X < exp(c; log® n)

%(ﬂfovyo) S e S

n

with a suitable positive constant ¢; depending only on «.
Now we may assume that | D, P|q, = Do P(x0,y0), where (zo,y0) € Qq.5, , that is,

0<z9 <6y, g < yo < 2xg .

g =



Consider the curve
{W) = (z,y) == (o + ", yo + ") 0<t<tg=(1— Jfo)l/qm} :

Clearly, v(0) = (z0,y0). Set

(4.3) =27 VW) o 5 Sl

=17¢

We claim that if ¢ > ¢/n3, then v(t) € Q,. Assume to the contrary that for some ¢t > ¢/n3
we have y(t) ¢ €, that is, either

Yo + ' =yo + (¥ — x)"™ > 22,
or
yo +tP™ =yo + (x — 29)"™ < %xo‘.
Consider the first possibility. Then
22 <yo+ (& —xo)™ < 2zf + 2" < 200 +
that is, < 21/26,, . But then we have

21/a

1/m
t = (m — wo)l/Qm S xl/Qm S xl/m S <21/a6n) S n3

contradicting the choice t > ¢/n3.
It remains to consider the case when for some t = (z — 29)"/%" > ¢/n? we have

1
Yo+ (x — o)™ < ixo‘ :

Clearly, using that 1 > £ > 1/2, that is, /(1 — £) > 1, we have

1/qm
(@ — wg) Vom > = > &1 & ymy & sy (—f 6n) :

nd — 1—-¢&n3 11— —1-&" —\1-¢
and hence
x—x02—§ Op > 3 Zo
1-¢ 1-¢
This yields that
x> 5 To + XTg = 0
T 1-¢ 1-¢

Therefore x — x¢ > £x. Thus, recalling that r,, < 2a, we have

1
3% >0+ (z —z0)™ > (€)™,
8



that is, by (4.3)
T —Q 1 —Tm 1 —2a 1
x < 25 < 25 =7

Using (4.1), we obtain

v < <2_1/2) 1/ (rm—a) - <2_1/2)mqm

that is,
1
t= (o —a)/tm <at/im <o <o =

which contradicts that ¢ > ¢/n® > 1/n3. Now we have completed the proof of our claim
that v(t) € Q, whenever t > ¢/n3. Furthermore, for t > ¢/n3 we have by (4.2)

C dm C m 2
T =z +tm > <—3) 2 <—3) > exp(—czlog™n)
n n

with a constant co depending only on «. As it was noted at the beginning of the proof,
for (x,y) € Q4 with > exp(—cy log” n) we have

(4.4) ‘8P oP

(@, y)| + |a_y(x’ y)| < exp(cz log” n)

with a suitable positive constant c3 depending only on «. Consider now, for instance, the
univariate polynomial

oP
G(t) := En (mo + ™, yo + tP™).

By (4.4) we have that
|G(t)] < exp(es log? n)

for every t > ¢/n3. Moreover, by (4.2)
deg(G) < cangpm, < canm < csnlogn

with suitable positive constants c4 and c5 depending only on a. Thus by the Chebyshev
(or Remez) inequality (see page 235 or 393 in [1], for example) we conclude that

HGH[O,c/n3] < exp(cg log2 n),
with a suitable positive constants cg depending only on . Now we obtain

oP

EN (20,0)| < exp(cglog® n)

by setting ¢ = 0. We can estimate (0P/0x)(xo,yo) in the same way. The proof of the
theorem is now completed. [J
9



Proof of Theorem 2.3. The proof of this theorem is somewhat similar to that of Theorem
2.2, so we give only a sketch of the proof. Clearly, given an increasing function ¢(x) tending
to oo as x — 00, there exists an irrational number o > 1 such that with some p,,, ¢, € N,
qm — 00, we have

" 1
(4.5) o< _ac——  meN.
Im Im@(qm)
Set
(4.6) n = [20@n)/6) 5 =3

Then, as in the proof of Theorem 2.2, it can be shown that whenever P € P2, | P|lq, <1,
and (xg,yo) € Qq with z¢ > §,, we have

|DwP(CUO>yO)| Sncqma wesla

for some ¢ > 0 depending only on «a. Now let (zg,y0) € Q4 and 0 < xg < §,,. Consider
the curve
{V(t) = (:EO + tqm7y0 + tpm>; 0 S t S tO} )

where tg := (1 — 0)'/%. Similarly to the proof of Theorem 2.2 it can be shown that ~(t)
stays below the curve y = 2z if 2/n3 <t < ty3. Now we prove that v(t) is located above
the curve y = 21% whenever ¢t > co/n® with a properly chosen absolute constant cq > 1.

2
Set
_ Pm

r:=x9+ I yi=yo+ P vy .
dm

Again, using that ¢t > ¢o/n3 and (4.6), we have
T — o =tI™ > con3Im = ¢d,, > Coo ,

that is, x — zg > &z provided that ¢y > £(1 — &)71, & := 271/(4®) " Assume now that (t)
is below the curve y = 1z for some t > ¢o/n®. Then

1
57 > o+ (z = 20)™ = (x—x0)"™ = (62)"™

that is, since r,, < 2« for sufficiently large values of m, we have

1 1 1
Tm—Q & Z¢=Tm & —2« —
R e

\/ﬁ.
1 1/(rm—a) qmp(qm)
r<|— < ,
(5) <(&)
10

Therefore, by (4.5)

Sl



hence using (4.6), we conclude

1 ‘P(Qm) 1
t < pl/am < (_) < 9=%(am)/2 < -

V2 n?

Evidently, this contradicts our choice ¢t > c¢o/n3,¢o > 1. Hence y(t) € Q, whenever
t > cg/n3, and similarly to the proof of Theorem 2.2, we obtain that

Mn(Qa) S nclqm

with some absolute constant ¢; > 0 and n = [2¢9(4m)/6]. Note that ¢(gn) < c2logn,
where the increasing ¢ can be chosen to have arbitrarily fast growth to oo as © — oo. This
completes the proof of Theorem 2.3. [

REFERENCES
[1] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York,
1995.

[2] M. Baran, Markov inequality on sets with polynomial parametrization, Ann. Polon. Math. 60 (1994),
60-79.

[3] L. Bos, N. Levenberg, P.D. Milman, and B.A. Taylor, Tangential Markov inequalities caracterize
algebraic submanifolds of R™, Indiana University Math. J. 44 (1995), 115-138.

[4] L. Bos, N. Levenberg, P.D. Milman, and B.A. Taylor, Tangential Markov inequalities on real algebraic
varieties, Indiana University Math. J. 47 (1998), 1257-1271.

[6] A. Krod, Extremal properties of multivariate polynomials on sets with analytic parametrization, East
J. Approx. 7 (2001), 27-40.

[6] A. Kro6 and J. Szabados, Markov-Bernstein type inequalities for multivariate polynomials on sets
with cusps, J. Approx. Theory 102 (2000), 72-95.

[7] W. Pawlucky and W. Plesniak, Markov’s inequality and C*° functions on sets with polynomial cusps,
Math. Ann. 275 (1986), 467—480.

[8] V. Totik, On Markoff inequality, Constructive Approx. 18 (2002), 427-441.
[9] L.P. Bos, A. Brudnyi, N. Levenberg, and V. Totik, Tangential Markov inequalities on transcendental
curves, Constr. Approx. 19 (2003), 339-354..

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843, USA
(TaMAs ERDELYI)
E-mail address: terdelyi@math.tamu.edu

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, REALTANODA U. 13-15,
BupaPEsT, HUNGARY, H-1053 (ANDRAS KROO)
E-mail address: kroo@renyi.hu

11



