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Abstract. Let Λ := (λk)
∞

k=0 be a sequence of distinct nonnegative real numbers
with λ0 := 0 and

∑

∞

k=1 1/λk < ∞. Let ̺ ∈ (0, 1) and ǫ ∈ (0, 1 − ̺) be fixed. An
earlier work of the first two authors shows that

C(Λ, ǫ, ̺)

:= sup
{

‖p‖[0,̺] : p ∈ span{xλ0 , xλ1 , . . . }, m{x ∈ [̺, 1] : |p(x)| ≤ 1} ≥ ǫ
}

is finite. In this paper an explicit upper bound for C(Λ, ǫ, ̺) is given. In the special
case λk := kα, α > 1, our bounds are essentially sharp.

1. Introduction

In this paper Λ := (λk)
∞

k=0 always denotes a sequence of real numbers satisfying

0 = λ0 < λ1 < λ2 < · · · .

In [1] a Remez-type inequality for Müntz polynomials:

p(x) =

n
∑

k=0

akx
λk

or equivalently for Dirichlet sums:

P (t) =

n
∑

k=0

ake
−λkt

is established. The most common form of this inequality states that for every
sequence (λk)

∞

k=0 satisfying
∑

∞

k=0 1/λk < ∞, there exists a constant C(Λ, ǫ) de-
pending only on Λ and ǫ (and not on n, ̺, or A) so that

‖p‖[0,̺] ≤ C(Λ, ǫ)‖p‖A
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for every Müntz polynomial p, as above, associated with the sequence (λk)
∞

k=0, and
for every set A ⊂ [̺, 1] of Lebesgue measure at least ǫ > 0. Throughout this paper
‖ · ‖A denotes the uniform norm on A ⊂ R.

Using this Remez-type inequality, we resolved two reasonably long standing con-
jectures in [1]. In this paper we give an explicit upper bound for the best possible
C(Λ, ǫ) in the above Remez-type inequality for non-dense Müntz spaces. Theorem
2.3 extends an inequality of Schwartz [4] in two directions. Theorem 2.1 offers a
more explicit bound for the sequences Λ := (kα)∞k=0, α > 1. The sharpness of the
Remez-type inequality of Theorem 2.1 is shown by Theorem 2.2.

2. Results

Theorem 2.1. Let λk := kα, k = 0, 1, . . . , α > 1. Let ̺ ∈ (0, 1), ǫ ∈ (0, 1 − ̺),
and ǫ ≤ 1/2. There exists a constant cα > 0 depending only on α so that

‖p‖[0,̺] ≤ exp
(

cαǫ
1/(1−α)

)

‖p‖A

for every p ∈ span{xλ0 , xλ1 , . . . } and for every set A ⊂ [̺, 1] of Lebesgue measure
at least ǫ > 0.

The next theorem shows that the inequality of Theorem 2.1 is essentially the
best possible.

Theorem 2.2. Let λk := kα, k = 0, 1, . . . , α > 1. For every α > 1 and ǫ ∈
(0, 1/2], there exists a constant cα > 0 depending only on α and Müntz polynomials

0 6= p = pα,ǫ ∈ span{xλ0 , xλ1 , . . . }

depending only on α and ǫ so that

|p(0)| ≥ exp
(

cαǫ
1/(1−α)

)

‖p‖[1−ǫ,1] .

Theorem 2.1 is a special case of the following more general, but less explicit
result.

Theorem 2.3. Suppose 0 = λ0 < λ1 < λ2 < · · · and
∑

∞

k=0 1/λk < ∞. Let
̺ ∈ (0, 1) and ǫ ∈ (0, 1− ̺). Let δ := − 1

2 log(1 − ǫ). Let N ∈ N be chosen so that

∞
∑

k=N+1

1

λk
≤

δ

3
.

Let

σk := Aλk with A :=
δ

3N
.

Then, with c := ‖t−1 sin t‖L2(R),

‖p‖[0,̺] ≤
3c

δ

N
∏

k=1

(

2 +
1

σk

)

‖p‖A

for every p ∈ span{xλ0 , xλ1 , . . . } and for every set A ⊂ [̺, 1] of Lebesque measure
at least ǫ > 0.
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3. Lemmas

Our first lemma shows that C(Λ, ǫ) in the Remez-type inequality is related to a
much simpler (Chebyshev-type) extremal problem. This is proved in both [1] and
[2].

Lemma 3.1. Suppose 0 = λ0 < λ1 < λ2 < · · · , ρ ∈ (0, 1), and ǫ ∈ (0, 1−ρ). Then

sup
{

‖p‖[0,̺] : p ∈ span{xλ0 , xλ1 , . . . }, m{x ∈ [̺, 1] : |p(x)| ≤ 1} ≥ ǫ
}

= sup

{

|p(0)|

‖p‖[1−ǫ,1]
: p ∈ span{xλ0 , xλ1 , . . . }

}

.

Our key lemma is the following.

Lemma 3.2. Suppose 0 = λ0 < λ1 < λ2 < · · · and
∑

∞

k=0 1/λk < ∞. Given
δ ∈ (0, 1), let N ∈ N be chosen so that

∞
∑

k=N+1

1

λk
≤

δ

3
.

Let

σk := Aλk with A :=
δ

3N
.

Then

|P (∞)| ≤
3c

δ

N
∏

k=1

(

2 +
1

σk

)

‖P‖[−δ,δ]

for every P ∈ span{e−λ0t, e−λ1t, . . . } with c := ‖t−1 sin t‖L2(R).

In the proof of Lemma 3.2 we will need the following observation.

Lemma 3.3. Let 0 = λ0 < λ1 < λ2 < · · · . Suppose

(1) F ∈ Eδ ∩ L2(R) ;

(2) F (iλk) = 0 , k = 1, 2, . . . (i is the imaginary unit) ;

(3) F (0) = 1 .

Then
|P (∞)| ≤ ‖F‖L2(R) ‖P‖L2[−δ,δ]

for every P ∈ span{e−λ0t, e−λ1t, . . . }.

An entire function f is called a function of exponential type δ if there exists a
constant c depending only on f so that

|f(z)| ≤ c exp(δ|z|) , z ∈ C .

The collection of all such entire functions of exponential type δ is denoted be Eδ.
The Paley-Wiener Theorem (see, for example, [3]) characterizes the functions F
which can be written as the Fourier transform of some function f ∈ L2[−δ, δ]. We
will need it in the proof of Lemma 3.3.
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Theorem (Paley-Wiener). Let δ ∈ (0,∞). Then f ∈ Eδ ∩ L2(R) if and only
if there exists an f ∈ L2[−δ, δ] so that

F (z) =

∫ δ

−δ

f(t)eitz dt .

The following comparison theorem for Müntz polynomials is proved in [2]. We
will need it in the proof of Theorem 2.3.

Lemma 3.4. Let Λ := (λk)
∞

k=0 and Γ := (γk)
∞

k=0 be increasing sequences of non-
negative real numbers with λ0 = 0, γ0 = 0, and λk ≤ γk for each k. Let 0 < a < b.
Then

max

{

|p(0)|

‖p‖[a,b]
: p ∈ span{xλ0 , xλ1 , . . . , xλn}

}

≥max

{

|p(0)|

‖p‖[a,b]
: p ∈ span{xγ0 , xγ1 , . . . , xγn}

}

.

4. Proofs

Proof of Lemma 3.3. By the Paley-Wiener Theorem

F (z) =

∫ δ

−δ

f(t)eitz dt

for some f ∈ L2[−δ, δ]. Now if

P (t) = a0 +
n
∑

k=1

ake
−λkt ,

then

∫ δ

−δ

f(t)P (t) dt = a0

∫ δ

−δ

f(t) dt+

n
∑

k=1

ak

∫ δ

−δ

f(t)e−λkt dt

= a0F (0) +

n
∑

k=1

akF (iλk) = a0 = P (∞) .

Hence by the Cauchy-Schwartz Inequality and the L2 inversion theorem of Fourier
transforms, we obtain

|P (∞)| ≤ ‖f‖L2[−δ,δ] ‖P‖L2[−δ,δ] ≤ ‖F‖L2(R) ‖P‖L2[−δ,δ]

and the lemma is proved. �
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Proof of Lemma 3.2. We define

F (z) :=
sin(δz/3)

δz/3

N
∏

k=1

((

1−
z

iλk

)

sin(σkz/λk)

σkz/λk

)

∞
∏

k=N+1

(

1−

(

sin(z/λk)

sin i

)4
)

,

where i is the imaginary unit. It follows easily that

F ∈ Eδ , F (0) = 1 , F (iλk) = 0 , k = 1, 2, . . .

and

|F (t)| ≤
sin(δt/3)

(δt/3

N
∏

k=1

(

2 +
1

σk

)

, t ∈ R .

Hence Lemma 3.3 implies that

|P (∞)| ≤
3c

δ

N
∏

k=1

(

2 +
1

σk

)

‖P‖[−δ,δ]

for every P ∈ span{e−λ0t, e−λ1t, . . . } with c := ‖t−1 sin t‖L2(R). �

Proof of Theorem 2.3. When A = [1 − ǫ, 1], the theorem follows from Lemma 3.2
by the substitution x = e−δe−t. The general case follows from Lemma 3.1. �

Proof of Theorem 2.1. Let

(4.1) δ := −
1

2
log(1− ǫ) .

Observe that N in Theorem 2.1 can be chosen so that

(4.2) N :=

⌊

(

δ(α− 1)

3

)1/(1−α)
⌋

+ 1 .

Also, σk in Lemma 3.2 is of the form

σk =
δkα

3N
.

Let M + 1 be the smallest value of k ∈ N for which

1

σk
< 1 , that is ,

3N

kαδ
≤ 1 .

Note that

M :=

⌊

(

3N

δ

)1/α
⌋

.
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If 0 < M < N , then

N
∏

k=1

(

2 +
1

σk

)

=

N
∏

k=1

(

2 +
3N

δkα

)

≤

(

M
∏

k=1

9N

δkα

)(

N
∏

k=M+1

3

)

=

(

9N

δ

)M (
M

e

)

−αM

3N−M

=

(

9eαN

δ

)M

M−αM3N−M

≤

(

9eαN

δ

)M
(

1

2

(

3N

δ

)1/α
)

−αM

3N−M

≤ (3(2e)α)M3N−M ≤ (3(2e)α)N ,

and the theorem follows by (4.1), (4.2), and Theorem 2.1.

If N ≤ M , then

N
∏

k=1

(

2 +
1

σk

)

=

N
∏

k=1

(

2 +
3N

δkα

)

≤

(

N
∏

k=1

9N

δkα

)

=

(

9N

δ

)N (
N

e

)

−αN

=

(

9eαN (1−α)

δ

)N

≤

(

9eα

δ

)N
(

(

δ(α− 1)

3

)1/(1−α)
)(1−α)N

≤

(

9eα

δ

)N (
δ(α− 1)

3

)N

≤ (3eα(α − 1))
N

,

and the theorem follows by (4.1), (4.2), and Theorem 2.1.

If M = 0, then
N
∏

k=1

(

2 +
1

σk

)

≤

N
∏

k=1

3 = 3N ,

and the theorem follows by (4.1), (4.2), and Theorem 2.1. �

Proof of Theorem 2.2. Let n ∈ N be a fixed. We define γk := knα−1, k = 0.1, . . . .
Let Tn(x) :=

(

1
2 (x− 1)

)n
and

Qn(x) := Tn

(

2xnα−1

1− (1− ǫ)nα−1
−

1 + (1− ǫ)n
α−1

1− (1− ǫ)nα−1

)n

∈ span{xγ0 , xγ1 , . . . xγn}.

Then, by Lemma 3.4,

sup

{

|p(0)|

‖p‖[1−ǫ,1]
: p ∈ span{xλ0 , xλ1 , . . . }

}

≥
|Qn(0)|

‖Qn‖[1−ǫ,1]
= |Qn(0)|

=

(

1

1− (1 − ǫ)nα−1

)n

.
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Now let n be the smallest integer satisfying nα−1 ≥ ǫ−1. Since (1−ǫ)1/ǫ is bounded
away from 0 on (0, 1/2], the result follows. �

Acknowledgements. The authors thank Gábor Halász for suggesting Theorem
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