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Abstract. A polynomial is called unimodular if each of its coefficients is a complex number

of modulus 1. A polynomial P of the form P (z) =
∑n

j=0
ajz

j is called conjugate reciprocal

if an−j = aj , aj ∈ C for each j = 0, 1, . . . , n. Let ∂D be the unit circle of the complex plane.
We prove that there is an absolute constant ε > 0 such that

max
z∈∂D

|f(z)| ≥ (1 + ε)
√

4/3m1/2

for every conjugate reciprocal unimodular polynomial f of degree m and for all sufficiently

large m. We also prove that there is an absolute constant ε > 0 such that

Mq(f
′) ≤ exp(ε(q − 2)/q)

(

m(m+ 1)(2m+ 1)

6

)

1/2

, 1 ≤ q < 2 ,

and

Mq(f
′) ≥ exp(ε(q − 2)/q)

(

m(m+ 1)(2m + 1)

6

)

1/2

, 2 < q ,

for every conjugate reciprocal unimodular polynomial f of degree m and for all sufficiently

large m, where

Mq(f
′)) :=

(

1

2π

∫

2π

0

|f ′(eit)|q dt

)1/q

, q > 0 .

1. Introduction

Let Tn be the set of all real trigonometric polynomials of degree at most n. Let Pc
n be the

set of all algebraic polynomials of degree at most n with complex coefficients. Throughout
this paper it will be comfortable for us to denote an appropriate period [a, a+ 2π) by K.

Key words and phrases. Littlewood polynomials; unimodular polynomials; conjugate reciprocal poly-

nomials; flatness properties.
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Let ∂D be the unit circle of the complex plane. Let

An :=



Q : Q(t) =

n∑

j=1

cos(jt+ γj) , γj ∈ R





and

Bn+1/2 :=



Q : Q(t) =

n∑

j=0

cos

(
2j + 1

2
t+ γj

)
, γj ∈ R



 .

We use the notation

‖Q‖p :=

(
1

2π

∫

K

|Q(t)|p dt
)1/p

, p > 0 ,

and
‖Q‖∞ := max

t∈K
|Q(t)| .

The Bernstein–Szegő inequality (see p. 232 in [7], for instance) gives that

|Q′(t)|2 + n2|Q(t)|2 ≤ n2‖Q‖2∞ , Q ∈ Tn , t ∈ R .

Integrating the left hand side on the period and using Parseval’s formula we obtain

n(n+ 1)(2n+ 1)

12
+

n3

2
≤ n2‖Q‖2∞ , Q ∈ An ,

and hence

(1.1) ‖Q‖∞ ≥
√

4/3
√
n/2 , Q ∈ An .

One of the highlights of this paper is to improve (1.1) by showing that there is an absolute
constant ε > 0 such that

‖Q‖∞ ≥ (1 + ε)
√
4/3

√
n/2 , Q ∈ An .

for all sufficiently large n. Let

Km :=



P : P (z) =

n∑

j=0

ajz
j , aj ∈ C , |aj | = 1 , j = 0, 1, . . . , m





be the set of all unimodular polynomials of degree m. Associated with an algebraic poly-
nomial P of the form

P (z) =

m∑

j=0

ajz
j , aj ∈ C , am 6= 0 ,
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let

P (z) :=
m∑

j=0

ajz
j and P ∗(z) := zmP (1/z) .

The polynomial P of degree m is called conjugate reciprocal if P ∗ = P . The classes An,
Bn+1/2, and Km and flatness properties of their elements were studied by many authors,
see [1–40], for instance. Let

Mq(f) := ‖f(eit)‖q =

(
1

2π

∫

K

|f(eit)|q dt
)1/q

, q ∈ (0,∞) ,

and
M∞(f) := sup

t∈K
|f(eit)| .

There is a beautiful short argument to see that

(1.2) M∞(f) ≥
√

4/3m1/2

for every conjugate reciprocal unimodular polynomial f ∈ Km. Namely, Parseval’s formula
gives

M∞(f ′) ≥ M2(f
′) =

(
m(m+ 1)(2m+ 1)

6

)1/2

, f ∈ Km .

Combining this with Malik’s extension of Lax’s Bernstein-type inequality

M∞(f ′) ≤ m

2
M∞(f)

valid for all conjugate reciprocal algebraic polynomials f ∈ Pc
m (see p. 438 in [7], for

instance), we obtain

M∞(f) ≥ 2

m

(
m(m+ 1)(2m+ 1)

6

)1/2

≥
√

4/3m1/2

for all conjugate reciprocal unimodular polynomials f ∈ Km. One of the highlights of this
paper is to improve (1.2) by showing that there is an absolute constant ε > 0 such that

M∞(f) ≥ (1 + ε)
√

4/3m1/2 ,

for every conjugate reciprocal unimodular polynomial f ∈ Km and for all sufficiently large
m. We also prove that there is an absolute constant ε > 0 such that

Mq(f
′) ≤ exp(ε(q − 2)/q)

(
m(m+ 1)(2m+ 1)

6

)1/2

, 1 ≤ q < 2 ,

and

Mq(f
′) ≥ exp(ε(q − 2)/q)

(
m(m+ 1)(2m+ 1)

6

)1/2

, 2 < q ,

for every conjugate reciprocal unimodular polynomial of degree m and for all sufficiently
large m. See Theorem 2.7.
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2. New Results

Theorem 2.1. Let Q ∈ An and P = (Q′)2 + n2Q2. There is an absolute constant δ > 0
such that

‖P‖1/2 ≤ (1− δ)‖P‖1
for all sufficiently large n.

Theorem 2.1*. Let Q ∈ Bn+1/2 and P = (Q′)2 + (n + 1/2)2Q2. There is an absolute
constant δ > 0 such that

‖P‖1/2 ≤ (1− δ)‖P‖1 .
for all sufficiently large n.

Theorem 2.2. Let Q ∈ An and P = (Q′)2 + n2Q2. There is an absolute constant δ > 0
such that

‖P‖∞ ≥ (1 + δ)‖P‖1
for all sufficiently large n.

Theorem 2.2*. Let Q ∈ Bn+1/2 and P = (Q′)2 + (n + 1/2)2Q2. There is an absolute
constant δ > 0 such that

‖P‖∞ ≥ (1 + δ)‖P‖1
for all sufficiently large n.

Theorem 2.3. There is an absolute constant δ > 0 such that

‖Q‖∞ ≥ (1 + δ)
√

4/3
√
n/2

for every Q ∈ An and for all sufficiently large n.

Theorem 2.3*. There is an absolute constant δ > 0 such that

‖Q‖∞ ≥ (1 + δ)
√

4/3
√
n/2

for every Q ∈ Bn+1/2 and for all sufficiently large n.

Theorem 2.4. There is an absolute constant ε > 0 such that

M1(f
′) ≤ (1− ε)

√
1/3m3/2

for every conjugate reciprocal unimodular polynomial f ∈ Km and for all sufficiently large
m.

Theorem 2.5. There is an absolute constant ε > 0 such that

M∞(f ′) ≥ (1 + ε)
√

1/3m3/2

for every conjugate reciprocal unimodular polynomial f ∈ Km and for all sufficiently large
m.
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Theorem 2.6. There is an absolute constant ε > 0 such that

M∞(f) ≥ (1 + ε)
√

4/3m1/2

for every conjugate reciprocal unimodular polynomial f ∈ Km and for all sufficiently large
m.

Theorem 2.7. There is an absolute constant ε > 0 such that

Mq(f
′) ≤ exp(ε(q − 2)/q)

(
m(m+ 1)(2m+ 1)

6

)1/2

, 1 ≤ q < 2 ,

and

Mq(f
′) ≥ exp(ε(q − 2)/q)

(
m(m+ 1)(2m+ 1)

6

)1/2

, 2 < q ,

for every conjugate reciprocal unimodular polynomial f ∈ Km and for all sufficiently large
m.

The above results were well known before without the absolute constants δ > 0 and
ε > 0,respectively.

Remark 2.1. The factor (1 + δ) in Theorem 2.2 cannot be replaced by (1 + δ)3/2.

Remark 2.2. The factor (1 + δ)
√
4/3 in Theorem 2.3 cannot be replaced by (1 + δ)

√
2.

Remark 2.3. The factor (1+ε)
√

1/3 in Theorem 2.5 cannot be replaced by (1+ε)
√
1/2.

Remark 2.4. The factor (1 + ε)
√

4/3 in Theorem 2.6 cannot be replaced by (1 + ε)
√
2.

A polynomial f ∈ Pc
m of degree m is called skew-reciprocal if f∗(z) = f(−z). A

polynomial f ∈ Pc
m of degree m is called plain-reciprocal if f∗ = f , that is, f(z) =

zmf(1/z) for all z ∈ C \ {0}. Observe that Corollary 2.8 in [28] may be formulated as
follows.

Remark 2.5. There is an absolute constant ε > 0 such that

max
z∈∂D

|f ′(z)| − min
z∈∂D

|f ′(z)| ≥ εm3/2

for all conjugate reciprocal, plain-reciprocal, and skew-reciprocal unimodular polynomials
f ∈ Km and for all sufficiently large m.

Observe that for conjugate reciprocal unimodular polynomials Theorem 2.5 is stronger
than Remark 2.5

Problem 2.1. Is there an absolute constant ε > 0 such that

M∞(f ′) ≥ (1 + ε)
√

1/3m3/2

holds for all plain-reciprocal and skew-reciprocal unimodular polynomials f ∈ Km and for
all sufficiently large m?
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Problem 2.2. Is there an absolute constant ε > 0 such that

M∞(f ′) ≥ (1 + ε)
√

1/3m3/2

or at least

max
z∈∂D

|f ′(z)| − min
z∈∂D

|f ′(z)| ≥ εm3/2

holds for all unimodular polynomials f ∈ Km and for all sufficiently large m?

Our method to prove Theorem 2.5 does not seem to work for all unimodular polynomials
f ∈ Km. In an e-mail communication several years ago B. Saffari speculated that the
answer to Problem 2.2 is no. However we do not know the answer even to Problem 2.1.

Let Lm be the collection of all polynomials of degree m with each of their coefficients
in {−1, 1}. The elements of Lm are called Littlewood polynomials of degree m.

Problem 2.3. Is there an absolute constant ε > 0 such that

M∞(f ′) ≥ (1 + ε)
√

1/3m3/2

or at least

max
z∈∂D

|f ′(z)| − min
z∈∂D

|f ′(z)| ≥ εm3/2

holds for all Littlewood polynomials f ∈ Lm and for all sufficiently large m?

The following problem due to Erdős [29] is open for a long time.

Problem 2.4. Is there an absolute constant ε > 0 such that

M∞(f) ≥ (1 + ε)m1/2

or at least

max
z∈∂D

|f(z)| − min
z∈∂D

|f(z)| ≥ εm1/2

holds for all Littlewood polynomials f ∈ Lm and for all sufficiently large m?

The same problem may be raised only for all skew-reciprocal Littlewood polynomials
f ∈ Lm, and as far as we know, it is also open.

3. Lemmas

Let m(A) denote the Lebesgue measure of a measurable set A ⊂ R. The following
lemma is due to Littlewood, see Theorem 1 in [34].

Lemma 3.1. Let R ∈ Tn be of the form

R(t) = Rn(t) =

n∑

j=1

aj cos(jt+ γj) , aj , γj ∈ R , j = 1, 2, . . . , n .
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Let sm :=
∑m

j=1 a
2
j , m = 1, 2, . . . , n, and let µ := ‖R‖2, that is, µ2 = sn. Suppose

‖R‖1 ≥ cµ ,

where c > 0 is a constant (necessarily not greater than 1). Suppose also that the coefficients
of R satisfy

s[n/h]/sn = µ−2
∑

1≤j≤n/h

a2j ≤ 2−9c6

for some constant h > 0. Let V = 2−5c3. Then there exists a constant B > 0 depending
only on c and h such that

m({t ∈ K : v1µ ≤ |R(t)| ≤ v2µ}) ≥ B(v2 − v1)
2

for every v1 and v2 such that −V ≤ v1 < v2 ≤ V .

Lemma 3.2. Associated with Q ∈ Tn we define the sets

Eδ := {t ∈ K : |Q′(t)| < δn3/2}

and
Fδ := {t ∈ K : |Q′′(t)| ≤ δ1/2n5/2} .

We have
m(Eδ \ Fδ) ≤ 8δ1/2 .

Proof of Lemma 3.2. Observe that Eδ \Fδ is the union of at most 4n pairwise disjoint open
subintervals of the period. Let these intervals be (xj , yj), j = 1, 2, . . . , µ, where µ ≤ 4n.
By the Mean Value Theorem we can deduce that there are ξj ∈ (xj , yj) such that

2δn3/2 ≥ |Q′(yj)−Q′(xj)| = |Q′′(ξj)|(yj − xj) ≥ δ1/2n5/2(yj − xj) ,

and hence
yj − xj ≤ 2δ1/2n−1 , j = 1, 2, . . . , µ .

Hence

m(Eδ \ Fδ) =

µ∑

j=1

(yj − xj) ≤ µ(2δ1/2n−1) ≤ 8δ1/2 .

�

Lemma 3.3. Let Q ∈ An, P := (Q′)2 + n2Q2, δ ∈ (0, 1), and

Gδ := {t ∈ K :
∣∣P (t)|1/2 − ‖P‖1/21

∣∣ ≤ δ1/4‖P‖1/21 } .

Suppose

(3.1) ‖P‖1/2 ≥ (1− δ)‖P‖1 .
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Then
m(K \Gδ) ≤ 4πδ1/2 .

Proof of Lemma 3.3. Using (3.1) we have

‖P‖1/21/2 ≥ (1− δ)1/2‖P‖1/21 ≥ (1− δ)‖P‖1/21 .

Hence

∫

K

∣∣|P (t)|1/2 − ‖P‖1/21

∣∣2 dt = 4π ‖P‖1/21

(
‖P‖1/21 − ‖P‖1/21/2

)

≤ 4π‖P‖1/21 δ‖P‖1/21 = 4πδ‖P‖1 .

Letting a := m(K \Gδ) we have

aδ1/2‖P‖1 ≤ 4πδ‖P‖1 ,

and the lemma follows. �

Lemma 3.4. Let Q ∈ An, P := (Q′)2 + n2Q2, and ‖P‖1/2 ≥ 31
32

‖P‖1 . Then R :=

n2Q2 + Q′′ satisfies the assumptions of Lemma 3.1 with c := 1/32 and h = 29326 for all
sufficiently large n.

Proof of Lemma 3.4. Let n ≥ 3. Observe that

R(t) =

n∑

j=1

aj cos(jt+ γj) , aj := n2 − j2, γj ∈ R , j = 1, 2, . . . , n .

Then

sn = µ2 = ‖R‖22 =
1

2

n∑

j=1

(n2 − j2)2 ,

hence
n5

6
≤ sn = µ2 ≤ n5

2
.

Using Parseval’s formula, we have

‖P‖1 =
1

2

n∑

j=1

(j2 + n2) ≥ 2n3

3
,

(3.2) ‖Q′′‖1 ≤ ‖Q′′‖2 =


1

2

n∑

j=1

j4




1/2

≤ (1 + o(1))
n5/2

√
10

,
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and

‖Q′‖2 =



1

2

n∑

j=1

j2




1/2

≤ (1 + o(1))
n3/2

√
6

,

and hence

‖nQ‖1 =
1

2π

∫

K

|P (t)−Q′(t)2|1/2 dt

≥ 1

2π

∫

K

|P (t)|1/2 dt− 1

2π

∫

K

|Q′(t)| dt

= ‖P‖1/21/2 − ‖Q′‖1 ≥
(
31

32

)1/2

‖P‖1/21 − ‖Q′‖2

≥ 31

32

√
2

3
n3/2 − (1 + o(1))

√
1

6
n3/2 .

(3.3)

Combining (3.2) and (3.3) we conclude

‖R‖1 = ‖n2Q+Q′′‖1 ≥ ‖n2Q‖1 − ‖Q′′‖1

≥ 31

32

√
2

3
n5/2 − (1 + o(1))

√
1

6
n5/2 − (1 + o(1))

n5/2

√
10

≥ 1

32
n5/2

for all sufficiently large n. Also, s[n/h] ≤ (n/h)n4 = n5/h, hence s[n/h]/sn ≤ 1/h. Therefore

the assumptions of Lemma 3.1 are satisfied with c := 1/32 and h = 29326. �

4. Proof of the Theorems

Proof of Theorem 2.1. Let Q ∈ An, P = (Q′)2+n2Q2, and R := n2Q2+Q′′. Let δ ∈ (0, 1).
Suppose ‖P‖1/2 ≥ (1 − δ)‖P‖1. Lemma 3.4 states that if 0 < δ ≤ 1/32 then R satisfies

the assumptions of Lemma 3.1 with c = 1/32 and h = 29326. Now let

Eδ := {t ∈ K : |Q′(t)| < δn3/2} ,

Fδ := {t ∈ K : |Q′′(t)| ≤ δn5/2} ,

Gδ := {t ∈ K : |P (t)1/2 − ‖P‖1/21 | ≤ δ1/4‖P‖1/21 } ,
and

Hγ := {t ∈ K : γn5/2 ≤ |R(t)| < 2γn5/2} .

Recall that by Parseval’s formula we have

(4.1) ‖P‖1 =
n3

2
+

n(n+ 1)(2n+ 1)

12
.
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Hence, if t ∈ Gδ ∩ Eδ ∩ Fδ and the absolute constant δ > 0 is sufficiently small, then

|R(t)| ≥n2|Q(t)| − |Q′′(t)| = n(P (t)−Q′(t)2)1/2 − |Q′′(t)|

≥n

(
(1− δ1/4)2

(
n3

2
+

n(n+ 1)(2n+ 1)

12

)
− δ2n3

)1/2

− δn5/2

≥1

2
n5/2 ,

that is,

(4.2) |R(t)| ≥ 1

2
n5/2 , t ∈ Gδ ∩ Eδ ∩ Fδ .

By Lemma 3.2 we have

(4.3) m(Eδ \ Fδ) ≤ 8δ1/2 .

By Lemma 3.3 we have

(4.4) m(K \Gδ) ≤ 4πδ1/2 .

Observe that if 0 < γ < 1/4 then (4.2) implies that Hγ ⊂ K \ (Gδ ∩Eδ ∩ Fδ), hence

Hγ ∩ Eδ ⊂ (Eδ \Gδ) ∪ (Eδ \ Fδ) .

Therefore, by (4.3) and (4.4) we can deduce that

m(Hγ ∩Eδ) ≤m(Eδ \Gδ) +m(Eδ \ Fδ)

≤ 4πδ1/2 + 8δ1/2 .

(4.5)

By Lemmas 3.1 and 3.4 there are absolute constants 0 < γ < 1/4 and B > 0 such that

(4.6) m(Hγ) ≥ Bγ2.

It follows from (4.5) and (4.6) that

(4.7) m(Hγ \ Eδ) ≥
1

2
Bγ2

for all sufficiently small absolute constants δ > 0. Observe that

(4.8) |2Q′(t)R(t)| ≥ 2δn3/2γn5/2 = 2γδn4 , t ∈ Hγ \ Eδ ,

and

(4.9) P ′(t) = 2Q′(t)R(t) .
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Combining (4.7), (4.8), and (4.9), we obtain

m({t ∈ K : |P ′(t)| ≥ 2γδn4}) ≥ 1

2
Bγ2 ,

and hence

(4.10)

∫

K

|P ′(t)| dt ≥ 1

2
Bγ2(2γδn4) = Bγ3δn4 .

Now let P̃ := P − 2π‖P‖1 ∈ T2n . Then (4.10) can be rewritten as

∫

K

|P̃ ′(t)| dt ≥ Bγ3δn4 ,

and by Bernstein’s inequality in L1 (see p. 390 of [7], for instance), we have

(4.11) 2π‖P̃‖1 =

∫

K

|P̃ (t)| dt ≥ 1

2
Bγ3δn3 .

Observe that

2π‖P̃‖1 =

∫

K

|P̃ (t)| dt

=

∫

K

∣∣P (t)− ‖P‖1
∣∣ dt ≤

∫

K

∣∣(P (t)1/2 − ‖P‖1/21

)(
P (t)1/2 + ‖P‖1/21

)∣∣ dt

≤
(∫

K

∣∣(P (t)1/2 − ‖P‖1/21

∣∣2 dt
)1/2(∫

K

∣∣(P (t)1/2 + ‖P‖1/21

∣∣2 dt
)1/2

=2π
(
2‖P‖1/21 (‖P‖1/21 − ‖P‖1/21/2

))1/2(
2‖P‖1/21

(
‖P‖1/21 + ‖P‖1/21/2

))1/2

≤4π‖P‖1/21

(
‖P‖1 − ‖P‖1/2

)1/2
= 4πn3/2

(
‖P‖1 − ‖P‖1/2

)1/2
.

(4.12)

Combining (4.11), (4.12), and (4.1), we conclude

‖P‖1 − ‖P‖1/2 ≥
(
2π‖P̃‖1
4πn3/2

)2

≥
(
Bγ3δn3/2

8π

)2

≥ δ∗n3

≥ δ∗‖P‖1

with an absolute constant δ∗ > 0. �

Proof of Theorem 2.2. By Theorem 2.1 there is an absolute constant δ > 0 such that

‖P‖1 =
1

2π

∫

K

|P (t)| dt = 1

2π

∫

K

|P (t)|1/2|P (t)|1/2 dt ≤ 1

2π

∫

K

|P (t)|1/2‖P‖1/2∞ dt

≤ ‖P‖1/21/2‖P‖1/2∞ ≤ (1− δ)1/2‖P‖1/21 ‖P‖1/2∞ .
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Hence
‖P‖1/21 ≤ (1− δ)1/2‖P‖1/2∞ ,

and the result follows. �

Proof of Theorem 2.3. The Bernstein–Szegő inequality (see p. 232 of [7], for instance)
yields

Q′(t)2 + n2Q(t)2 ≤ n2‖Q‖2∞, t ∈ R , Q ∈ An ⊂ Tn ,

hence if P = (Q′)2 + n2Q2, then

‖P‖∞ ≤ n2‖Q‖∞ .

Hence, using Theorem 2.1 and Parseval’s formula we can deduce that

‖Q‖2∞ ≥n−2‖P‖∞ ≥ n−2(1 + δ)‖P‖1 = n−2(1 + δ)
(
‖Q′‖22 + n2‖Q‖22

)

=n−2(1 + δ)

(
n(n+ 1)(2n+ 1)

12
+

n3

2

)
≥ (1 + δ)(4/3)(n/2)

with an absolute constant δ > 0 and the theorem follows. �

The proofs of Theorems 2.1*, 2.2*, and 2.3* are similar to those of Theorems 2.1, 2.2,
and 2.3 respectively. The modifications required in the proofs of Theorems 2.1*, 2.2*, and
2.3* are straightforward for the experts and we omit the details.

Proof of Theorem 2.4. First assume that m = 2n is even and f ∈ Km is a conjugate
reciprocal unimodular polynomial. Let f(z) =

∑m
j=0 ajz

j , where aj ∈ C and |aj| = 1 for
each j = 0, 1, . . . , m. As f is conjugate reciprocal, we have

am−j = aj , j = 0, 1, . . . , m ,

and an ∈ {−1, 1}, in particular. Let Q ∈ An be defined by 2Q(t) := e−intf(eit) − an.
Then

ieitf ′(eit) = eint(2Q′(t) + in(2Q(t) + an)) ,

hence the triangle inequality implies that

|f ′(eit)| ≤ 2|eint(Q′(t) + inQ(t))|+ |eintinan| = 2|Q′(t) + inQ(t)|+ n

= 2|P (t)|1/2 + n ,

where P := (Q′)2 + n2Q2 is the same as in Theorem 2.1, and the theorem follows from
Theorem 2.1 as

M1(f
′) ≤ 2‖P‖1/21/2 + n ≤ 2(1− δ)1/2‖P‖1/21 + n

≤ 2(1− δ)1/2
(
n(n+ 1)(2n+ 1)

12
+

n3

2

)1/2

+ n

≤ 2(1− δ)1/2
(
2(n+ 1)3

3

)1/2

+ n

≤ (1− δ)1/2
√

1/3m3/2 + o(m3/2) .
12



Now assume that m = 2n+ 1 is odd and f ∈ Km is a conjugate reciprocal unimodular
polynomial. Let Q ∈ Bn+1/2 be defined by 2Q(t) := e−imt/2f(eit). Then

ieitf ′(eit) = 2eimt/2(Q′(t) + (im/2)Q(t))

implies that

|f ′(eit)| = 2|eimt/2(Q′(t) + (im/2)Q(t))| = 2|Q′(t) + (im/2)Q(t)|
= 2|P (t)|1/2 ,

where P := (Q′)2 + (n+1/2)2Q2 is the same as in Theorem 2.1*, and the theorem follows
from Theorem 2.1* and Parseval’s formula as

M1(f
′) ≤ 2‖P‖1/21/2 ≤ 2(1− δ)1/2‖P‖1/21

≤ 2(1− δ)1/2
(
(n+ 1)(n+ 2)(2n+ 3)

12
+

(n+ 1)3

2

)1/2

≤ 2(1− δ)1/2
(
2(n+ 1)3

3

)1/2

o(n3/2)

≤ (1− δ)1/2
√

1/3m3/2 + o(m3/2) .

�

Proof of Theorem 2.5. Let f ∈ Km be a conjugate reciprocal unimodular polynomial. By
Theorem 2.4 there is an absolute constant ε > 0 such that

m(m+ 1)(2m+ 1)

6
=
(
M2(f

′)
)2

=
1

2π

∫

K

|f ′(eit)|2 dt = 1

2π

∫

K

|f ′(eit)||f ′(eit)| dt

≤ 1

2π

∫

K

|f ′(eit)|max
τ∈K

|f ′(eiτ )| dt

≤ M1(f
′)M∞(f ′)

≤ (1− ε)
√

1/3m3/2M∞(f ′) .

Hence √
1/3m3/2 ≤ (1− ε)M∞(f ′) ,

and the theorem follows. �

Proof 1 of Theorem 2.6. First assume that m = 2n is even and f ∈ Km is a conjugate
reciprocal unimodular polynomial. Let f(z) =

∑m
j=0 ajz

j , where aj ∈ C and |aj| = 1 for
each j = 0, 1, . . . , m. As f is conjugate reciprocal, we have

am−j = aj , j = 0, 1, . . . , m ,
13



and an ∈ {−1, 1}, in particular. Let Q ∈ An be defined by 2Q(t) = e−intf(eit) − an.
Observe that ∣∣∣∣max

z∈∂D
|f(z)| − ‖2Q‖∞

∣∣∣∣ ≤ 1 ,

hence the theorem follows from Theorem 2.3. Now assume that m = 2n + 1 is odd and
f ∈ Km is a conjugate reciprocal unimodular polynomial. Let Q ∈ Bn+1/2 be defined by

2Q(t) := e−imt/2f(eit). Observe that

max
z∈∂D

|f(z)| = ‖2Q‖∞ ,

hence the theorem follows from Theorem 2.3*. �

Proof 2 of Theorem 2.6. It is well known (see p. 438 of [7], for instance) that if f is
a conjugate reciprocal unimodular polynomial of degree m then ‖f ′‖∞ = (m/2) ‖f‖∞ .
Hence the theorem follows from a combination of this and Theorem 2.5. �

Proof of Theorem 2.7. Let f ∈ Km be conjugate reciprocal. Observe that Parseval’s
formula gives

(4.13) M2(f
′) =

(
m(m+ 1)(2m+ 1)

6

)1/2

.

As we will see, both inequalities of the theorem follow from Theorem 2.4 and the following
convexity property of the function h(q) := q logMq(g) on (0,∞). Let g be a continuous
function on ∂D and let

Iq(g) := Mq(g)
q =

1

2π

∫

K

|g(eit)|q dt .

Then h(q) := log Iq(g) = q logMq(g) is a convex function of q on (0,∞). This is a simple
consequence of Hölder’s inequality. For the sake of completeness, before we apply it, we
present the short proof of this fact. We need to see that if q < r < p, then

Ir(g) ≤ Ip(g)
r−q

p−q Iq(g)
p−r

p−q ,

that is,

(4.14)

(
1

2π

∫

K

|g(eit)|r dt
)p−q

≤
(

1

2π

∫

K

|g(eit)|p dt
)r−q (

1

2π

∫

K

|g(eit)|q dt
)p−r

.

To see this let

α :=
p− q

r − q
, β :=

p− q

p− r
, γ :=

p

α
, δ :=

q

β
,

hence 1/α+ 1/β = 1 and γ + δ = r. Let

F (t) := |g(eit)|γ = |g(eit)|
p(r−q)
p−q ,

14



and

G(t) := |g(eit)|δ = |g(eit)|
q(p−r)
p−q .

Then by Hölder’s inequality we conclude

∫

K

F (t)G(t) dt ≤
(∫

K

F (t)α dt

)1/α(∫

K

G(t)β dt

)1/β

,

and (4.14) follows.
Let q ∈ [1, 2). Then, using the convexity property of the function h(q) := q logMq(f

′)
on (0,∞), we obtain

2 logM2(f
′)− q logMq(f

′)

2− q
≥ 2 logM2(f

′)− logM1(f
′)

2− 1
.

Combining this with Theorem 2.4 and (4.13) gives the theorem.
Now let q ∈ (2,∞). Then, using the convexity property of the function h(q) :=

q logMq(f
′) on (0,∞), we obtain

q logMq(f
′)− 2 logM2(f

′)

q − 2
≥ 2 logM2(f

′)− logM1(f
′)

2− 1
.

Combining this with Theorem 2.4 and (4.13) gives the theorem. �

Proof of Remark 2.1. Let (fn) be an ultraflat sequence of unimodular polynomials fn ∈ Kn

satisfying M∞(fn) ≤ (1+ εn)
√
n with a sequence (εn) of numbers εn > 0 converging to 0.

It is shown in [32] that such a sequence (fn) exists. Let gn(z) = zfn−1(z). Let Qn ∈ An

be defined by 2Qn(t) := Re(gn(e
it)). Then the Bernstein–Szegő inequality (see p. 232 in

[7], for instance) gives that Pn := (Q′
n)

2 + n2Q2
n satisfy

‖Pn‖∞ ≤ n2‖Qn‖2∞ ≤ (1 + εn)
2n3,

while by Parseval’s formula we have

‖Pn‖1 =
n3

2
+

n(n+ 1)(2n+ 1)

12
≥ 2n3

3
.

�

Proof of Remark 2.2. Let Qn ∈ An be the same as in the proof of Remark 2.1. Then

‖Qn‖∞ ≤ n−1‖Pn‖1/2∞ ≤ (1 + εn)n
1/2 .

�

Proof of Remark 2.4. Let fn ∈ Kn and gn(z) = zfn−1(z) be the same as in the proof of
Remark 2.1. For m = 2n we define hm ∈ Km by

hm(z) := zn(gn(z) + gn(1/z) + 1) .
15



We have
M∞(hm) ≤ 2(1 + εn)

√
n+ 1 ≤ (1 + εn)

√
2
√
m+ 1 .

�

Proof of Remark 2.3. For m = 2n let hm ∈ Km be the same as in the proof of Remark 2.4.
Then using the well-known Bernstein-type inequality for conjugate reciprocal polynomials
(see p. 438 in [7], for instance), we have

M∞(h′
m) ≤ m

2
(1 + εn)

√
2
√
m ≤ 1√

2
(1 + εn)m

3/2 .

�
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