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Abstract. Let Fn denote the set of polynomials of degree at most n with coefficients
from {−1, 0, 1}. Let Gn be the collection of polynomials p of the form

p(x) =
n
∑

j=m

ajx
j , |am| = 1 , |aj | ≤ 1 ,

where m is an unspecified nonnegative integer not greater than n.

We establish the right Markov-type inequalities for the classes Fn and Gn on [0, 1].
Namely there are absolute constants C1 > 0 and C2 > 0 such that

C1n log(n+ 1) ≤ max
06=p∈Fn

|p′(1)|

‖p‖[0,1]
≤ max

06=p∈Fn

‖p′‖[0,1]

‖p‖[0,1]
≤ C2n log(n+ 1)

and

C1n
3/2 ≤ max

06=p∈Gn

|p′(1)|

‖p‖[0,1]
≤ max

06=p∈Gn

‖p′‖[0,1]

‖p‖[0,1]
≤ C2n

3/2 .

It is quite remarkable that the right Markov factor for Gn is much larger than the
right Markov factor for Fn. We also show that there are absolute constants C1 > 0
and C2 > 0 such that

C1n log(n+ 1) ≤ max
06=p∈Ln

|p′(1)|

‖p‖[0,1]
≤ max

06=p∈Ln

‖p′‖[0,1]

‖p‖[0,1]
≤ C2n log(n+ 1) ,

where Ln denotes the set of polynomials of degree at most n with coefficients from
{−1, 1}. For polynomials p ∈ F :=

⋃∞
n=0 Fn with |p(0)| = 1 and for y ∈ [0, 1) the

Bernstein-type inequality

C1 log
(

2
1−y

)

1− y
≤ max

p∈F
|p(0)|=1

‖p′‖[0,y]

‖p‖[0,1]
≤

C2 log
(

2
1−y

)

1− y

is also proved with absolute constants C1 > 0 and C2 > 0.

This completes earlier work of the authors where the upper bound in the first
inequality is obtained.
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Littlewood had a particular fascination with the class of polynomials with coef-
ficients restricted to being in the set {−1, 0, 1}. See in particular [22] and the many
references included later in the introduction. Many of the problems he considered
concerned rates of possible growth of such polynomials in different norms on the
unit circle. Others concerned location of zeros of such polynomials. The best known
of these is the now solved Littlewood conjecture which asserts that there exists an
absolute constant c > 0 such that

∫ π

−π

∣

∣

∣

∣

n
∑

k=0

ak exp(iλkt)

∣

∣

∣

∣

dt ≥ c logn

whenever the |ak| ≥ 1 and the exponents λk are distinct integers. (Here and in what
follows the expression “absolute constant” means a constant that is independent of
all the variables in the inequality).

We are primarily concerned in this paper with establishing the correct Markov-
type inequalities on the interval [0, 1] for various classes of polynomials related to
these Littlewood problems. One of the notable features is that theses bounds are
quite distinct from those for unrestricted polynomials.

In this paper n always denotes a nonnegative integer. We introduce the following
classes of polynomials. Let

Pn :=







p : p(x) =

n
∑

j=0

ajx
j , aj ∈ R







denote the set of all algebraic polynomials of degree at most n with real coefficients.

Let

Pc
n :=







p : p(x) =

n
∑

j=0

ajx
j , aj ∈ C







denote the set of all algebraic polynomials of degree at most n with complex coef-
ficients.

Let

Fn :=







p : p(x) =

n
∑

j=0

ajx
j , aj ∈ {−1, 0, 1}







denote the set of polynomials of degree at most n with coefficients from {−1, 0, 1}.

Let

Ln :=







p : p(x) =

n
∑

j=0

ajx
j , aj ∈ {−1, 1}







denote the set of polynomials of degree at most n with coefficients from {−1, 1}.
(Here we are using Ln in honor of Littlewood.)

Let Kn be the collection of polynomials p ∈ Pc
n of the form

p(x) =

n
∑

j=0

ajx
j , |a0| = 1 , |aj | ≤ 1 .
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Let Gn be the collection of polynomials p ∈ Pc
n of the form

p(x) =

n
∑

j=m

ajx
j , |am| = 1 , |aj | ≤ 1 ,

where m is an unspecified nonnegative integer not greater than n.

Obviously
Ln ⊂ Fn, Kn ⊂ Gn ⊂ Pc

n .

The following two inequalities are well known in approximation theory. See, for
example, Duffin and Schaeffer [12], Cheney [9], Lorentz [24], DeVore and Lorentz
[11], Lorentz, Golitschek, and Makovoz [25], Borwein and Erdélyi [4].

Markov Inequality. The inequality

‖p′‖[−1,1] ≤ n2‖p‖[−1,1]

holds for every p ∈ Pn.

Bernstein Inequality. The inequality

|p′(y)| ≤ n
√

1− y2
‖p‖[−1,1]

holds for every p ∈ Pn and y ∈ (−1, 1).

In the above two theorems and throughout the paper ‖·‖A denotes the supremum
norm on A ⊂ R.

Our intention is to establish the right Markov-type inequalities on [0, 1] for the
classes Fn, Ln, Kn, and Gn. We also prove an essentially sharp Bernstein-type
inequality on [0, 1) for polynomials p ∈ F :=

⋃∞
n=0 Fn with |p(0)| = 1.

For further motivation and introduction to the topic we refer to Borwein and
Erdélyi [5]. This paper is, in part, a continuation of the work presented in [5]. The
books by Lorentz, Golitschek, and Makovoz [25], and by Borwein and Erdélyi [4]
also contain sections on Markov- and Bernstein-type inequalities for polynomials
under various constraints.

The classes Fn, Ln, and other classes of polynomials with restricted coefficients
have been thoroughly studied in many (mainly number theoretic) papers. See, for
example, Beck [1], Bloch and Pólya [2], Bombieri and Vaaler [3], Borwein, Erdélyi,
and Kós [5], Borwein and Ingalls [7], Byrnes and Newman [8], Cohen [10], Erdős
[13], Erdős and Turán [14], Ferguson [15], Hua [16], Kahane [17] and [18], Konjagin
[19], Körner [20], Littlewood [21] and [22], Littlewood and Offord [23], Newman
and Byrnes [26], Newman and Giroux [27], Odlyzko and Poonen [28], Salem and
Zygmund [29], Schur [30], and Szegő [31].

For several extremal problems the classes Fn tend to behave like Gn. See, for
example, Borwein, Erdélyi, and Kós [5]. It is quite remarkable that as far as the
Markov-type inequality on [0, 1] is concerned, there is a huge difference between
these classes. Compare Theorems 2.1 and 2.4.
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2. New Results

Theorem 2.1. There are absolute constants c1 > 0 and c2 > 0 such that

c1n log(n+ 1) ≤ max
06=p∈Fn

|p′(1)|
‖p‖[0,1]

≤ max
06=p∈Fn

‖p′‖[0,1]
‖p‖[0,1]

≤ c2n log(n+ 1) .

Theorem 2.2. There are absolute constants c1 > 0 and c2 > 0 such that

c1n log(n+ 1) ≤ max
06=p∈Ln

|p′(1)|
‖p‖[0,1]

≤ max
06=p∈Ln

‖p′‖[0,1]
‖p‖[0,1]

≤ c2n log(n+ 1) .

Theorem 2.3. There are absolute constants c1 > 0 and c2 > 0 such that

c1n log(n+ 1) ≤ max
06=p∈Kn

|p′(1)|
‖p‖[0,1]

≤ max
06=p∈Kn

‖p′‖[0,1]
‖p‖[0,1]

≤ c2n log(n+ 1) .

Theorem 2.4. There are absolute constants c1 > 0 and c2 > 0 such that

c1n
3/2 ≤ max

06=p∈Gn

|p′(1)|
‖p‖[0,1]

≤ max
06=p∈Gn

‖p′‖[0,1]
‖p‖[0,1]

≤ c2n
3/2 .

The following theorem establishes an essentially sharp Bernstein-type inequality
on [0, 1) for polynomials p ∈ F :=

⋃∞
n=0 Fn with |p(0)| = 1.

Theorem 2.5. There are absolute constants c1 > 0 and c2 > 0 such that

c1 log
(

2
1−y

)

1− y
≤ max

p∈F
|p(0)|=1

‖p′‖[0,y]
‖p‖[0,1]

≤
c2 log

(

2
1−y

)

1− y

for every y ∈ [0, 1).

Our next result is an essentially sharp Bernstein-type inequality on [0, 1) for
polynomials p ∈ L :=

⋃∞
n=0 Ln.

Theorem 2.6. There are absolute constants c1 > 0 and c2 > 0 such that

c1 log
(

2
1−y

)

1− y
≤ max

p∈L

‖p′‖[0,y]
‖p‖[0,1]

≤
c2 log

(

2
1−y

)

1− y

for every y ∈ [0, 1).

Our final result is an essentially sharp Bernstein-type inequality on [0, 1) for
polynomials p ∈ K :=

⋃∞
n=0 Kn.
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Theorem 2.7. There are absolute constants c1 > 0 and c2 > 0 such that

c1 log
(

2
1−y

)

1− y
≤ max

p∈K

‖p′‖[0,y]
‖p‖[0,1]

≤
c2 log

(

2
1−y

)

1− y

for every y ∈ [0, 1).

A Bernstein-type inequality on [0, 1) for polynomials p ∈ G :=
⋃∞

n=0 Gn is also
established in [5]. However, there is a gap between the upper bound in [5] and the
lower bound we are able to prove at the moment.

3. Lemmas for Theorem 2.4

To prove Theorem 2.4 we need several lemmas. The first one is a result from [6].

Lemma 3.1. There are absolute constants c3 > 0 and c4 > 0 such that

exp
(

−c3
√
n
)

≤ inf
06=p∈Gn

‖p‖[0,1] ≤ inf
06=p∈Fn

‖p‖[0,1] ≤ exp
(

−c4
√
n
)

.

We will also need a corollary of the following well known result.

Hadamard Three Circles Theorem. Suppose f is regular in

{z ∈ C : r1 ≤ |z| ≤ r2}.
For r ∈ [r1, r2], let

M(r) := max
|z|=r

|f(z)|.

Then

log(r2/r1) logM(r) ≤ log(r2/r) logM(r1) + log(r/r1) logM(r2) .

Note that the conclusion of the Hadamard Three Circles Theorem can be rewrit-
ten as

logM(r) ≤ logM(r1) +
log(r/r1)

log(r2/r1)

(

logM(r2)− logM(r1)
)

.

Corollary 3.2. Let α ∈ R . Suppose 1 ≤ α ≤ 2n. Suppose f is regular inside and

on the ellipse An,α with foci at 0 and 1 and with major axis
[

−α
n , 1 +

α
n

]

. Let Bn,α

be the ellipse with foci at 0 and 1 and with major axis
[

− 1
αn , 1 +

1
αn

]

. Then there

is an absolute constant c5 > 0 such that

max
z∈Bn,α

log |f(z)| ≤ max
z∈[0,1]

log |f(z)|+ c5
α

(

max
z∈An,α

log |f(z)| − max
z∈[0,1]

log |f(z)|
)

.

Proof. This follows from the Hadamard Three Circles Theorem with the substi-
tution w = 1

4 (z + z−1) + 1
2 . See also the remark following the Hadamard Three

Circles Theorem, which is applied with the circles centered at 0 with radii r1 := 1,
r := 1 + c

√

1/(αn), and r2 := 1 +
√

α/n, respectively, with a suitable choice of
c. �
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Lemma 3.3. Let p ∈ Gn with ‖p‖[0,1] =: exp(−α), α ≥ log(n+ 1). Then there is

an absolute constant c6 > 0 such that

max
z∈Bn,α

|p(z)| ≤ c6 max
z∈[0,1]

|p(z)| ,

where Bn,α is the same ellipse as in Corollary 3.2.

Proof. Note that ‖p‖[0,1] ≥ |p(1/4)| ≥ 4−n for every p ∈ Gn. Therefore α ≤
(log 4)n . Our assumption on p ∈ Gn can be written as

max
z∈[0,1]

log |p(z)| = −α .

Also, p ∈ Gn and z ∈ An,α imply that

log |p(z)| ≤ log
(

(n+ 1)
(

1 + α
n

)n+1
)

≤ log(n+ 1) + (n+ 1)αn ≤ log(n+ 1) + 2α ≤ 3α .

Now the lemma follows from Corollary 3.2. �

Lemma 3.4. There is an absolute constant c7 > 0 such that

‖p′‖[0,1] ≤ c7αn ‖p‖[0,1]
for every p ∈ Gn with ‖p‖[0,1] = exp(−α) ≤ (n+ 1)−1.

Proof. This follows from Lemma 3.3 and the Cauchy Integral Formula. Note that
for a sufficiently large absolute constant c > 0, the disks centered at y ∈ [0, 1] with
radius 1/(cαn) are inside the ellipse Bn,α (see the definition in Corollary 3.2). �

Lemma 3.5. There is an absolute constant c8 > 0 such that

‖p′‖[0,1] ≤ c8n log(n+ 1) ‖p‖[0,1]
for every p ∈ Gn with ‖p‖[0,1] ≥ (n+ 2)−1.

Proof. Applying Corollary 3.2 with α = log(n + 2), we obtain that there is an
absolute constant c9 > 0 such that

max
z∈Bn,log(n+2)

|p(z)| ≤ c9 max
z∈[0,1]

|p(z)|

for every p ∈ Gn with ‖p‖[0,1] ≥ (n+ 2)−1. To see this note that

max
z∈[0,1]

log |p(z)| ≥ − log(n+ 2)

and

max
z∈An,α

log |p(z)| ≤ log

(

n

(

1 +
log(n+ 2)

n

)n )

≤ 2 log(n+ 2) .

Now the Cauchy Integral Formula yields that

‖p′‖[0,1] ≤ c10n log(n+ 1)‖p‖[0,1]
with an absolute constant c10 > 0. Note that for a sufficiently large absolute
constant c > 0, the disks centered at y ∈ [0, 1] with radius 1/(cn log(n + 2)) are
inside the ellipse Bn,log(n+2) (see the definition in Corollary 3.2). �
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4. Proof of the Theorems

Proof of Theorem 2.1. The upper bound of the theorem was proved in [5]. It
is sufficient to establish the lower bound of the theorem for degrees of the form
N = 16n(n+1), n = 1, 2, . . . . This follows from the fact that if we have polynomials

PN ∈ FN , N = 16n(n+ 1), n = 1, 2, . . . ,

showing the lower bound ot the theorem with a constant c > 0, then the polynomials

QN := P16n(n+1) ∈ FN , N = 1, 2, . . . ,

show the lower bound of the theorem with the constant c/1024 > 0, where n is the
largest integer for which 16n(n+1) ≤ N . To show the lower bound of the theorem
for the values N = 16n(n + 1), n = 1, 2, . . . , we proceed as follows. Let n ≥ 1 and
let Tn be the Chebyshev polynomial defined by

Tn(x) = cosnθ , x = cos θ , θ ∈ [0, π] .

Then ‖Tn‖[−1,1] = 1. Denote the coefficients of Tn by ak = ak,n, that is,

Tn(x) =

n
∑

k=0

akx
k .

It is well known that the Chebyshev polynomials Tn satisfy the three-term recursion

Tn(x) = 2xTn−1(x)− Tn−2(x) .

Hence each ak is an integer and, as a trivial bound for the coefficients of Tn, we
have

(4.1) |ak| ≤ 3n , k = 0, 1, . . . , n .

Also, either a0 = 0 or a0 = ±1. Let A := 16n and let

Pn(x) :=

n
∑

k=0

sign(ak)

|ak|−1
∑

j=0

xAk+j .

We will show that Pn gives the required lower bound (with n replaced by N :=
16n(n+ 1) in the theorem). It is straightforward from (4.1) that

(4.2) Pn ∈ FN with N := 16n(n+ 1) .

Observe that for x ∈ [0, 1],

|Pn(x) − Tn(x
A)| =

∣

∣

∣

∣

n
∑

k=0

sign(ak)

|ak|−1
∑

j=0

xAk+j −
n
∑

k=0

akx
Ak

∣

∣

∣

∣

=

n
∑

k=0

sign(ak)x
Ak

|ak|−1
∑

j=0

(xj − 1)

=

∣

∣

∣

∣

n
∑

k=1

sign(ak)x
Ak(1− x)

|ak|−1
∑

j=0

(1 + x+ x2 + · · ·+ xj−1)

∣

∣

∣

∣

≤
n
∑

k=1

|ak|2 − |ak|
2

(

max
x∈[0,1]

xAk(1− x)

)

≤
n
∑

k=1

|ak|2
Ak

≤ n9n

16n
≤ 1 .
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Hence, for x ∈ [0, 1],

|Pn(x)| ≤ |Tn(x
A)|+ |Pn(x) − Tn(x

A)| ≤ 1 + 1 = 2 .

We conclude that

(4.3) ‖Pn‖[0,1] ≤ 2 .

Let Qn,A(x) := Tn(x
A). Then

Q′
n,A(1) = AT ′

n(1) = An2 .

Now

P ′
n(1) =

n
∑

k=1

sign(ak)

|ak|−1
∑

j=0

(Ak + j)

= Q′
n,A(1) +

n
∑

k=1

sign(ak)

|ak|−1
∑

j=0

j

≥ An2 − n|ak|2 ≥ 16nn2 − 9nn ≥ 9

16
16nn2 .

(4.4)

Now (4.2), (4.3), and (4.4) give the lower bound of the theorem.

Proof of Theorem 2.2. The upper bound of the theorem follows from Theorem 2.1.
To show the lower bound we modify the construction in Theorem 2.1 by replacing
the 0 coefficients in Pn by±1 coefficients with alternating signs. We use the notation
of the proof of Theorem 2.1. Let Rn ∈ LN be the polynomial arising from Pn in
this way. Recall that N := 16n(n+ 1). Then, using the fact that Rn −Pn is of the
form

Rn(x) − Pn(x) = ±
m
∑

j=1

(−1)jxkj , 0 ≤ k1 < k2 < · · · < km ≤ N ,

we have ‖Rn − Pn‖[0,1] ≤ 1. Combining this with (4.2), we obtain

(4.5) ‖Rn‖[0,1] ≤ ‖Pn‖[0,1] + ‖Rn − Pn‖[0,1] ≤ 2 + 1 = 3 .

On the other hand, using the form of Rn−Pn given above, we have |(Rn−Pn)
′(1)| ≤

N . This, together with (4.4) gives

(4.6) R′
n(1) ≥ P ′

n(1)− |(Rn − Pn)
′(1)| ≥ 9

16
16nn2 − 16n(n+ 1) ≥ 1

4
16nn2

for n ≥ 4. Now (4.5) and (4.6) together with Rn ∈ LN and N := 16n(n+ 1), give
the lower bound of the theorem.

Proof of Theorem 2.3. Since ‖p‖[0,1] ≥ |p(0)| = 1, the upper bound of the theorem
follows as a special case of Lemma 3.5. The lower bound of the theorem follows
from the lower bound in Theorem 2.2.
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Proof of Theorem 2.4. To see the upper bound, note that Lemma 3.1 implies α ≤
c3n

1/2 in Lemma 3.4. So the upper bound of the theorem follows from Lemmas 3.4
and 3.5. Now we prove the lower bound of the theorem. Let k be a natural number
and let

Qn(x) := xn+1Tk(x
k) =

n+1+k2
∑

j=n+1

bjx
j ,

where Tk is, once again, the Chebyshev polynomial defined by

Tk(x) = cosnθ , x = cos θ , θ ∈ [0, π] .

Then ‖Qn‖[0,1] = 1 and

(4.7) Q′
n(1) = k3 + n+ 1 ,

while, the coefficients bj of Qn satisfy

(4.8) |bj | ≤ 3k , j = 0, 1, . . . , n+ 1 + k2

(see the argument in the proof of Theorem 2.1). By Lemma 3.1 there is a polynomial
Rn ∈ Fn such that

‖Rn‖[0,1] ≤ exp(−c4
√
n) .

Let

Pn := Rn + exp(−c4
√
n)Qn =:

n+1+k2
∑

j=0

ajx
j .

Then

(4.9) ‖Pn‖[0,1] ≤ 2 exp(−c4
√
n) .

It follows from (4.8) that |aj | ≤ exp(−c4
√
n)3k for each j ≥ n + 1. From now on

let

(4.10) k :=

⌊

c4
√
n

log 3

⌋

,

which implies that |aj | ≤ 1 for each j ≥ n+1, while aj ∈ {−1, 0, 1} for each j ≤ n.
Hence

(4.11) Pn ∈ Gn+1+k2 , n+ 1 + k2 ≤ c5n ,

with an absolute constant c5. Note that if n is large enough, then R′
n(1) = 0.

Otherwise, as an integer, |R′
n(1)| would be at least 1 and Markov’s inequality would

imply that
1 ≤ |R′

n(1)| ≤ 2n2‖Rn‖[0,1] ≤ 2n2 exp(−c4
√
n) ,

which is impossible for a large enough n, say for n ≥ c6. Hence, combining (4.9),
(4.10), and (4.7), we conclude

P ′
n(1) = R′

n(1) + exp(−c4
√
n)Q′

n(1) = exp(−c4
√
n)(k3 + n+ 1)

≥ exp(−c4
√
n)c7n

3/2 ≥ c7
2
n3/2‖Pn‖[0,1] .
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for every n ≥ c6 with an absolute constant c7 > 0. This, together with (4.11)
finishes the proof of the lower bound of the theorem.

Proof of Theorem 2.5. The upper bound of the theorem was proved in [5]. To
show the lower bound we proceed as follows. Let Pn be the same as in the proof
of Theorem 2.1. Throughout this proof we will use the notation introduced in the
proof of Theorem 2.1. We will show that Pn gives the required lower bound with a
suitably chosen even n depending on y. If n := 2m is even, then

(4.12) |Pn(0)| = 1, and Pn ∈ FN with N := 16n(n+ 1) .

Recall that by (4.3) we have ‖Pn‖[0,1] ≤ 2. As in the proof of Theorem 2.1, let

A := 16n and Qn,A(x) := Tn(x
A). For n ≥ n0, the Chebyshev polynomial Tn has a

zero δ in [e−2, e−1]. In particular, T ′
n(δ) ≥ n. Let n ∈ N be the largest even integer

for which

(4.13) δ1/A = δ16
−n ≤ e−16−n ≤ y .

Without loss of generality we may assume that n ≥ n0, otherwise p ∈ F defined by
p(x) := 1 + x shows the lower bound of the theorem. Note that there are absolute
constants c3 > 0 and c4 > 0 such that 16n ≥ c3(1 − y)−1 and hence

(4.14) 16nn ≥
c4 log

(

2
1−y

)

1− y

Therefore

Q′
n,A(δ

1/A) = Aδ(A−1)/AT ′
n(δ) ≥ Anδ = 16nnδ ≥ e−216nn .

Observe that δ ∈ [e−2, e−1] and 0 ≤ j ≤ |ak| − 1 ≤ A (see the notation introduced
in the proof of Theorem 2.1) imply

(Ak + j)δ(Ak+j−1)/A −Akδ(Ak−1)/A ≤ j

and

(Ak + j)δ(Ak+j−1)/A −Akδ(Ak−1)/A ≥ Akδk−(1/A)(δj/A − 1)

≥ Akδk−(1/A)−j

A
log

1

δ
≥ −2j .

We conclude that

(4.15)
∣

∣(Ak + j)δ(Ak+j−1)/A −Akδ(Ak−1)/A
∣

∣ ≤ 2j
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Now, using the definition of Pn (see the proof of Theorem 2.1), (4.13), (4.15), and
(4.14), we obtain

‖P ′
n‖[0,y] ≥ |P ′

n

(

δ1/A
)

| =
∣

∣

n
∑

k=1

sign(ak)

|ak|−1
∑

j=0

(Ak + j)δ(Ak+j−1)/A
∣

∣

=
∣

∣Q′
n,A(δ

1/A) +
n
∑

k=1

sign(ak)

|ak|−1
∑

j=0

(

(Ak + j)δAk+j−1)/A −AkδAk−1)/A
)∣

∣

≥
∣

∣Q′
n,A(δ

1/A)
∣

∣−
n
∑

k=1

|ak|−1
∑

j=0

2j

≥ e−216nn− 2n|ak|2 ≥ e−216nn− 2n9n ≥ 1
1616

nn

≥
c1 log

(

2
1−y

)

1− y

for every n ≥ 2 with an absolute constant c1 > 0. This, together with (4.3) and
(4.12) gives the lower bound of the theorem. �

Proof of Theorem 2.6. The upper bound of the theorem follows from Theorem 2.5.
To show the lower bound we modify the construction in Theorem 2.5 by replacing
the 0 coefficients in Pn by±1 coefficients with alternating signs. We use the notation
of the proof of Theorems 2.1 and 2.5. Let Rn ∈ LN be the polynomial arising from
Pn in this way. As in the proof of Theorem 2.2, we have ‖Rn − Pn‖[0,1] ≤ 1, and
combining this with (4.3), we obtain

(4.16) ‖Rn‖[0,1] ≤ ‖Pn‖[0,1] + ‖Rn − Pn‖[0,1] ≤ 2 + 1 = 3 .

On the other hand, for a ∈ [0, 1), we have

(4.17) |(Rn − Pn)
′(a)| ≤ Var∞1 fa(x) ,

where fa(x) := xax−1. Now it is elementary calculus to show that the graph of fa
on [1,∞) contains two monotone pieces,

max
x∈[1,∞)

|fa(x)| ≤
c3

1− a
and lim

x→∞
fa(x) = 0 .

Hence
Var∞1 fa(x) ≤

c4
1− a

with an absolute constant c4 > 0. This, together with (4.17) yields

(4.18) |(Rn − Pn)
′(a)| ≤ c4

1− a
.

Now let y ∈ [0, 1). By the proof of Theorem 2.5, there exists an a ∈ [0, y] such that

|P ′
n(a)| ≥

c1 log
(

2
1−y

)

1− y
.
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Combining this with (4.18), we deduce

‖R′
n‖[0,y] ≥ |R′

n(a)| ≥ |P ′
n(a)| − |(Rn − Pn)

′(a)|

≥
c1 log

(

2
1−y

)

1− y
− c4

1− y
≥

c5 log
(

2
1−y

)

1− y

for y ∈ [y0, 1], where c5 > 0 and y0 ∈ [0, 1) are absolute constants. This, together
with (4.16) and Rn ∈ LN gives the lower bound of the theorem for y ∈ [y0, 1]. If
y ∈ [0, y0), then the trivial example p(x) := 1 + x shows the lower bound of the
theorem. �

Proof of Theorem 2.7. The upper bound of the theorem was proved in [5]. The
lower bound of the theorem follows from the lower bound in either Theorem 2.5 or
Theorem 2.6. �
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