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Abstract. We prove a few interesting inequalities for Lorentz polynomials. A highlight of

this paper states that the Markov-type inequality

max
x∈[−1,1]

|f ′(x)| ≤ n max
x∈[−1,1]

|f(x)|

holds for all polynomials f of degree at most n with real coefficients for which f ′ has all its

zeros outside the open unit disk. Equality holds only for f(x) := c((1± x)n − 2n−1) with a

constant 0 6= c ∈ R. This should be compared with Erdős’s classical result stating that

max
x∈[−1,1]

|f ′(x)| ≤
n

2

(

n

n− 1

)

n−1

max
x∈[−1,1]

|f(x)|

for all polynomials f of degree at most n having all their zeros in R \ (−1, 1).

1. Introduction

Let Pn denote the collection of all polynomials of degree at most n with real coefficients.
Let Pc

n denote the collection of all polynomials of degree at most n with complex coefficients.
Let

‖f‖A := sup
x∈A

|f(x)|

denote the supremum norm of a complex-valued function f defined on a set A. The Markov
inequality asserts that

‖f ′‖[−1,1] ≤ n2‖f‖[−1,1]

holds for all f ∈ Pc
n. The inequality

|f ′(x)| ≤ n√
1− x2

‖f‖[−1,1]
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holds for all f ∈ Pc
n and for all x ∈ (−1, 1), and is known as Bernstein inequality. For

proofs of these see [2] or [5], for instance. Various analogues of the above two inequalities
are known in which the underlying intervals, the maximum norms, and the family of poly-
nomials are replaced by more general sets, norms, and families of functions, respectively.
These inequalities are called Markov-type and Bernstein-type inequalities. If the norms
are the same in both sides, the inequality is called “Markov-type”, while “Bernstein-type
inequality” usually means a pointwise estimate for the derivative. Markov- and Bernstein-
type inequalitiies are known on various regions of the complex plane and the n-dimensional
Euclidean space, for various norms such as weighted Lp norms, and for many classes of
functions such as polynomials with various constraints, exponential sums of n terms, just to
mention a few. Markov- and Bernstein-type inequalities have their own intrinsic interest.
In addition, they play a fundamental role in approximation theory.

It had been observed by Bernstein that Markov’s inequality for monotone polynomials
is not essentially better than for arbitrary polynomials. Bernstein proved that

sup
f

‖f ′‖[−1,1]

‖f‖[−1,1]
=

{

1
4(n+ 1)2 , if n is odd
1
4n(n+ 2) , if n is even ,

where the supremum is taken over all f ∈ Pn which are monotone on [−1, 1]. See [23], for
instance. This is surprising, since one would expect that if a polynomial is this far away
from the “equioscillating” property of the Chebyshev polynomial Tn, then there should
be a more significant improvement in the Markov inequality. In [16] Erdős gave a class
of restricted polynomials for which the Markov factor n2 improves to cn. He proved that
there is an absolute constant c such that

|f ′(x)| ≤ min

{

c
√
n

(1− x2)
2 ,

en

2

}

‖f‖[−1,1] , x ∈ (−1, 1) ,

for all f ∈ Pn having all their zeros in R \ (−1, 1). This result motivated several people to
study Markov- and Bernstein-type inequalities for polynomials with restricted zeros and
under some other constraints. Generalizations of the above Markov- and Bernstein-type
inequality of Erdős have been extended in various directions by several people including
Lorentz [20], Scheick [24], Szabados [25], Máté [21], P. Borwein [1], Erdélyi [6,7,9,12,13],
Rahman and Schmeisser [23], Kroó and Szabados [18,19], Halász [17], and the list can be
even longer. A special attention is paid to the classes Pn,k and Pc

n,k, where Pn,k denotes
the set of all polynomials of degree at most n with real coefficients and with at most k
(0 ≤ k ≤ n) zeros in the open unit disk, and Pc

n,k denotes the set of all polynomials of

degree at most n with complex coefficients and with at most k (0 ≤ k ≤ n) zeros in the
open unit disk. Associated with 0 ≤ k ≤ n and x ∈ (−1, 1), let

Bn,k,x :=

√

n(k + 1)

1− x2
, B∗

n,k,x := max

{

√

n(k + 1)

1− x2
, n log

(

e

1− x2

)

}

,

and
Mn,k := n(k + 1) , M∗

n,k := max{n(k + 1), n logn} .
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In [10] and [11] it is shown that

c1 min{B∗
n,k,x,M

∗
n,k} ≤ sup

f∈Pc
n,k

|f ′(x)|
‖f‖[−1,1]

≤ c2 min{B∗
n,k,x,M

∗
n,k}

for all x ∈ (−1, 1), where c1 > 0 and c2 > 0 are absolute constants. This result should be
compared with the inequalities

c1 min{Bn,k,x,Mn,k} ≤ sup
f∈Pn,k

|f ′(x)|
‖f‖[−1,1]

≤ c2 min{Bn,k,x,Mn,k}

for all x ∈ (−1, 1), where c1 > 0 and c2 > 0 are absolute constants. See [4] and [11]. It
may be surprising that there is a significant difference between the real and complex cases
as far as Markov- and Bernstein-type inequalities are concerned. In [3] essentially sharp
Markov- and Bernstein-type inequalities for the classes Pn,k are proved even in Lp norms
on [−1, 1] for all p > 0.

In this paper we revisit Erdős’s paper [16] and make several remarks to his Markov-type
inequality in it. Erdős claimed in [16] that his method gave a Markov factor slightly better
than en/2, namely,

‖f ′‖[−1,1] ≤
n

2

(

n

n− 1

)n−1

‖f‖[−1,1]

for all f ∈ Pn having all their zeros in R\(−1, 1). Indeed, at some points of his arguments,
by replacing applications of the inequality 1+x ≤ ex with an application of the inequality
between the geometric and arithmetic means of nonnegative numbers, we can easily see
this slight improvement.

In 1963 Lorentz [20] proved that there is an absolute constant c > 0 such that

|f ′(x)| ≤ c min

{√

n

1− x2
, n

}

‖f‖[−1,1] , x ∈ (−1, 1) ,

for all f ∈ Bn(−1, 1), where

Bd(a, b) :=







f : f(x) =

d
∑

j=0

aj(b− x)j(x− a)d−j , aj ≥ 0, j = 0, 1, . . . , d







.

for real numbers a ≤ b and nonnegative integers d. He also made the observation that if
f ∈ Pn,0 then either f ∈ Bn(−1, 1) or −f ∈ Bn(−1, 1), where Pn,0 denotes the collection
of all f ∈ Pn having all their zeros outside the open unit disk. Scheick [24] has found the
best possible constant c in Lorentz’s Markov-type inequality for f ∈ Bn(−1, 1). He showed
that

‖f ′‖[−1,1] ≤
en

2
‖f‖[−1,1]

for all f ∈ Bn(−1, 1).
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An elementary, but very useful tool for proving inequalities for polynomials with re-
stricted zeros is the Bernstein or Lorentz representation of polynomials. Namely, as Lorentz
observed it, if f ∈ Pn,0 is positive on (−1, 1) then it is of the form

(1.1) f(x) =

d
∑

j=0

aj(1− x)j(x+ 1)d−j , aj ≥ 0 , j = 0, 1, . . . , d ,

with d = n. This is formulated as Lemma 3.2 in this paper and its simple proof is
reproduced. Moreover, if a polynomial f ∈ Pn is positive on (−1, 1) and has no zeros
in the ellipse Lε with large axis [−1, 1] and small axis [−εi, εi] (ε ∈ [−1, 1]) then it has
a Lorentz representation (1.1) with d ≤ 3nε−2. See [14]. Combining this with Lorentz’s
Markov- and Bernstein-type inequality gives that there is an absolute constant c > 0 such
that

f ′(x)| ≤ c min

{ √
n

ε
√
1− x2

,
n

ε2

}

‖f‖[−1,1] , x ∈ (−1, 1) ,

for all f ∈ Pn having no zeros in Lε.
The minimal value of d ∈ N for which a polynomial f has a representation (1.1) is called

the Lorentz degree of the polynomial and it is denoted by d(f). It follows from the already
mentioned result in [14] that d(f) < ∞ if and only if f has no zeros in (−1, 1). This is a
theorem ascribed to Hausdorff. In addition, it has been proved in [8] that if

f(x) = ((x− a)2 + ε2(1− a2))n, 0 < ε ≤ 1, −1 < a < 1 ,

then
c1nε

−2 ≤ d(f) ≤ c2nε
−2

with absolute constants c1 > 0 and c2 > 0. Lorentz degree of trigonometric polynomials
on an interval (−ω, ω) shorter than the period is studied in [15].

The well known results of Nikolskii assert that the essentially sharp inequality

‖f‖Lq[−1,1] ≤ c(p, q)n2/p−2/q‖f‖Lp[−1,1]

holds for all algebraic polynomials f ∈ Pc
n and for all 0 < p < q ≤ ∞, while the essentially

sharp inequality
‖f‖Lq[−π,π] ≤ c(p, q)n1/p−1/q‖f‖Lp[−π,π]

holds for all trigonometric polynomials f of degree at most n with complex coefficients
and for all 0 < p < q ≤ ∞. The subject started with [22] and [26]. There are quite a
few related papers in the literature. In this paper we establish the right Nikolskii-type
inequalities for the classes Bd(−1, 1) and Pn,0.

2. New Results

For p > 0 let

‖f‖p :=

(
∫ 1

−1

|f(x)| dx
)1/p

, ‖f‖∞ := max
x∈[−1,1]

|f(x)| .
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As in Section 1 we will use the following notation. Let Pn denote the collection of all
polynomials of degree at most n with real coefficients. For real numbers a ≤ b and d ∈ N

let

Bd(a, b) :=

{

f : f(x) =
d
∑

j=0

aj(b− x)j(x− a)d−j , aj ≥ 0, j = 0, 1, . . . , d

}

.

Let Pn,0 denote the collection of all f ∈ Pn having all their zeros outside the open unit
disk. Our first two results are the right Nikolskii-type inequalities for the classes Bd(−1, 1)
and Pn,0.

Theorem 2.1. We have

‖f‖p ≤
(

qd+ 1

2

)1/q−1/p

‖f‖q

for all f ∈ Bd(−1, 1) and for all 0 < q < p ≤ ∞. If d > 0 equality holds only for p = ∞
and f(x) := c(1± x)d with a constant c ≥ 0.

Theorem 2.2. We have

‖f‖p ≤
(

qn+ 1

2

)1/q−1/p

‖f‖q

for all f ∈ Pn,0 and for all 0 < q < p ≤ ∞. If n > 0 equality holds only for p = ∞ and

f(x) := c(1± x)n with a constant 0 6= c ∈ R.

An application of Theorem 2.1 with q = 1 and p = ∞ allows us to prove the following
sharp Markov-type inequality for all f ∈ Pd such that f ′ ∈ Bd−1(−1, 1).

Theorem 2.3. We have

‖f ′‖∞ ≤ d ‖f‖∞
for all f ∈ Pd with f ′ ∈ Bd−1(−1, 1). Equality holds only for f(x) := σc((1+σx)d − 2d−1)
with a constant c ≥ 0 and σ ∈ {−1, 1}.

Combining Theorem 2.3 with Lemma 3.2 gives the following.

Theorem 2.4. We have

‖f ′‖∞ ≤ n ‖f‖∞
for all f ∈ Pn for which f ′ has all its zeros outside the open unit disk. Equality holds only

for f(x) := c((1± x)n − 2n−1) with a constant 0 6= c ∈ R.

Our final result is a sharp Markov-type inequality for all f ∈ Pn which are monotone
on [−1, 1] and have all their zeros in R \ (−1, 1). Erdős claimed this in [16] but he did not
give a hint how to prove this. Experts seem to be puzzled by this observation of Erdős
even today.
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Theorem 2.5. We have

‖f ′‖∞ ≤ n

2
‖f‖∞

for all f ∈ Pn which is monotone on [−1, 1] and has all its zeros in R \ (−1, 1). Equality

holds only for f(x) := c(1± x)n, f(x) := c(x+3)(x− 1), and f(x) := c(x− 3)(x+1) with
a constant 0 6= c ∈ R.

We note that there is a hint to Part c] of Exercise 10 on page 432 of the book [2]
suggesting that Theorem 2.5 holds. However, it was discovered by M. Boedihardjo that
the hint to part c] of E.10 on page 432 of the book [2] does not work out. Here we claim
a proof of Theorem 2.5 as a consequence of Theorem 2.1. A direct elementary proof of
Theorem 2.5 by using undergraduate calculus would be desirable.

3. Lemmas

Lemma 3.1. Let a ≤ a1 ≤ b1 ≤ b be real numbers, and let d be a nonnegative integer.

Then Bd(a, b) ⊂ Bd(a1, b1).

Proof of Lemma 3.1. This follows from the identities

x− a =
b1 − a

b1 − a1
(x− a1) +

a1 − a

b1 − a1
(b1 − x)

and

b− x =
b− b1
b1 − a1

(x− a1) +
b− a1
b1 − a1

(b1 − x)

valid for all x ∈ C. �

Lemma 3.2. Suppose f ∈ Pn has all its zeros outside the open unit disk. Then either

f ∈ Bn(−1, 1) or −f ∈ Bn(−1, 1).

Proof of Lemma 3.2. This follows from the identities

x− α = 1
2
(1− α)(x+ 1) + 1

2
(−1− α)(1− x)

and

(x− α)(x− α) = 1
4 |1 + α|2(1− x)2 + 1

2 (|α|2 − 1)(1− x)(1 + x) + 1
4 |1− α|2(x+ 1)2

valid for all x ∈ C and α ∈ C. Observe that

(1− α)(−1− α) = α2 − 1 ≥ 0 , α ∈ R \ (−1, 1) ,

and
|α|2 − 1 ≥ 0 , α ∈ C , |α| ≥ 1 .

�
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Lemma 3.3. We have

(max{f(a), f(b)})q ≤ qd+ 1

b− a

∫ b

a

f(x)q dx

for all f ∈ Bd(a, b) and for all q > 0. Equality holds only for f(x) = c(x − a)d and

f(x) = c(b− x)d with a constant c ≥ 0.

Proof of Lemma 3.3. Let f ∈ Bd(a, b) be of the form

f(x) =

d
∑

j=0

aj(b− x)j(x− a)d−j , aj ≥ 0, j = 0, 1, . . . , d .

Then

f(b)q =(a0(b− a)d)q =
qd+ 1

b− a

∫ b

a

(a0(x− a)d)q dx

≤ qd+ 1

b− a

∫ b

a

(

d
∑

j=0

aj(b− x)j(x− a)d−j

)q

dx

=
qd+ 1

b− a

∫ b

a

f(x)q dx .

Similarly,

f(a)q =(ad(b− a)d)q =
qd+ 1

b− a

∫ b

a

(ad(b− x)d)q dx

≤ qd+ 1

b− a

∫ b

a

(

d
∑

j=0

aj(b− x)j(x− a)d−j

)q

dx

=
qd+ 1

b− a

∫ b

a

f(x)q dx .

�

Lemma 3.4. We have

‖f‖q∞ ≤ qd+ 1

2
‖f‖qq .

for all f ∈ Bd(−1, 1) and for all q > 0. Equality holds only for f(x) = c(1 ± x)d with a

constant c ≥ 0.

Proof of Lemma 3.4. Let y ∈ [−1, 1] be such that f(y) = ‖f‖∞. By Lemma 3.1 we have

Bd(−1, 1) ⊂ Bd(−1, y) ∩ Bd(y, 1) .
7



Hence Lemma 3.3 yields

(y + 1)f(y)q ≤ (qd+ 1)

∫ y

−1

f(x)q dx

and

(1− y)f(y)q ≤ (qd+ 1)

∫ 1

y

f(x)q dx

Adding the above two inequalities, we conclude

‖f‖q∞ = f(y)q ≤ qd+ 1

2

∫ 1

−1

f(x)q dx =
qd+ 1

2
‖f‖qq .

�

4. Proof of the Theorems

Proof of Theorem 2.1. When p = ∞ the Theorem follows from Lemma 3.4. Now let
f ∈ Bd(−1, 1) and 0 < q < p < ∞. Using Lemma 3.4 we obtain

‖f‖pp =

∫ 1

−1

f(x)p dx ≤
(

∫ 1

−1

f(x)q dx

)

‖f‖p−q
∞ ≤ ‖f‖qq

(

qd+ 1

2

)(p−q)/q

‖f‖p−q
q

=

(

qd+ 1

2

)(p−q)/q

‖f‖pq ,

hence

‖f‖p ≤
(

qd+ 1

2

)1/q−1/p

‖f‖q .

�

Proof of Theorem 2.2. . Combining Theorem 2.1 and Lemma 3.2 gives the result. �

Proof of Theorem 2.3. Applying Theorem 2.1 with f replaced by f ′ ∈ Bd−1, p := ∞, and
q := 1, we obtain

‖f ′‖∞ ≤ d

2

∫ 1

−1

f ′(x) dx =
d

2
(f(1)− f(−1)) ≤ d ‖f‖∞ .

�

Proof of Theorem 2.4. Assume that f ′ ∈ Pn−1 has no zeros in the open unit disk. Then,
by Lemma 3.2 either f ′ ∈ Bn−1(−1, 1) or −f ′ ∈ Bn−1(−1, 1). Without loss of generality
we may assume that f ′ ∈ Bn−1(−1, 1), and Theorem 2.3 gives the result. �

Proof of Theorem 2.5. Assume that f ∈ Pn is monotone on [−1, 1] and has all its zeros
in R \ (−1, 1). As f has only real zeros, repeated applications of Rolle’s Theorem imply
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that f ′ ∈ Pn−1 has only real zeros and at most one simple zero in (−1, 1). However, as
f is (strictly) monotone on (−1, 1), f ′ cannot have a simple zero in (−1, 1), so f ′ has
all its zeros in R \ (−1, 1). Hence Lemma 3.2 implies that either f ′ ∈ Bn−1(−1, 1) or
−f ′ ∈ Bn−1(−1, 1). Without loss of generality we may assume that f ′ ∈ Bn−1(−1, 1).
Applying Theorem 2.1 with f replaced by f ′ ∈ Bd−1, p := ∞, and q := 1, we obtain

‖f ′‖∞ ≤ n

2

∫ 1

−1

f ′(x) dx =
n

2
(f(1)− f(−1)) ≤ n

2
‖f‖[−1,1] ,

where in the last step we used that f(1)f(−1) ≥ 0 since f ∈ Pn has all its zeros in
R \ (−1, 1). �
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