
NOTES ON INEQUALITIES WITH DOUBLING WEIGHTS

Tamás Erdélyi

Abstract. Various important weighted polynomial inequalities, such as Bernstein,
Marcinkiewicz, Nikolskii, Schur, Remez, etc. inequalities, have been proved re-
cently by Giuseppe Mastroianni and Vilmos Totik under minimal assumptions on
the weights. In most of the cases this minimal assumption is the doubling condition.
Sometimes however, like in the weighted Nikolskii inequality, the slightly stronger
A∞ condition is used. Throughout their paper the Lp norm is studied under the
assumption 1 ≤ p < ∞. In this note we show that their proofs can be modified so
that many of their inequalities hold even if 0 < p < 1. The crucial tool is an estimate
for quadrature sums for the pth power (0 < p < ∞ is arbitrary) of trigonometric
polynomials established by Lubinsky, Máté, and Nevai. For technical reasons we
discuss only the trigonometric cases.

1. The Weights

For Introduction we refer to Sections 1 and 2 of the Mastroianni-Totik paper
[12] and the references therein. See [1] – [9], [11], and [13]. Here we just formulate
the original and some equivalent definitions that we shall use. In Sections 2 – 7 we
shall work with integrable, 2π-periodic weight functions W satisfying the so-called
doubling condition:

(1.1) W (2I) ≤ LW (I)

for intervals I ⊂ R, where L is a constant independent of I, 2I is the interval
with length 2|I| (|I| denotes the length of the interval I) and with midpoint at the
midpoint of I, and

W (I) :=

∫

I

W (u) du .

In other words, W has the doubling property if the measure of a twice enlarged
interval is less than a constant times the measure of the original interval. An
integrable, 2π periodic weight function on R satisfying the doubling condition will
be called a doubling weight. We start with the following elementary observation.
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Lemma 1.1. Associated with an integrable, 2π-periodic weight function W on R,

let

Wn(x) := n

∫ x+1/n

x−1/n

W (u) du .

Then W is a doubling weight if and only if there are constants s > 0 and K > 0
depending only on W such that

Wn(y) ≤ K(1 + n|x− y|)sWn(x) .

holds for all n ∈ N and x, y ∈ R. Here, if L is the doubling constant, then s = log2 L
and K := L are suitable choices.

2. The Main Theorem

The following basic theorem is stated for 1 ≤ p <∞ in [12]. Here we extend its
validity to the case 0 < p ≤ 1. The proof is a modification of Mastroianni’s and
Totik’s arguments, but for the sake of completeness we present the whole proof.
Also, note that the case 1 ≤ p < ∞ follows immediately from the case 0 < p ≤ 1.
Let Tn denote the class of all real trigonometric polynomials of degree at most n .

Theorem 2.1. Let W be a doubling weight, and let Wn be as in Lemma 1.1. Let

0 < p < ∞ be arbitrary. Then there is a constant C > 0 depending only on p and

on the doubling constant L such that for every Tn ∈ Tn we have

(2.1) C−1

∫ π

−π

|Tn|
pW ≤

∫ π

−π

|Tn|
pWn ≤ C

∫ π

−π

|Tn|
pW .

Seemingly we have not gained too much, but, as the next lemma shows, Wn is
very close to be a nonnegative trigonometric polynomial of degree at most n.

Theorem 2.2. Suppose W satisfies the doubling condition. Let 0 < p <∞ . Then
there are constants B1 > 0 , B2 > 0 , and B3 > 0 depending only on p and on

the doubling constant L, and for each n ∈ N there is a nonnegative trigonometric

polynomial Qn of degree at most N := ((log2 L)/p+ 4)n so that

(2.2) B1Wn(x) ≤ Qn(x)
p ≤ B2Wn(x)

and

(2.3) |Q′
n(x)|

p ≤ B3n
pWn(x)

uniformly in x ∈ R .

Proof of Theorem 2.2. We define 2m as the smallest even number not less than
(log2 L)/p+ 2. In particular 2m ≤ (log2 L)/p+ 4 . Let

(2.4) Sn(t) = n−(2m−1)

(

sin((n+ 1/2)t)

sin(t/2)

)2m



INEQUALITIES WITH DOUBLING WEIGHTS 3

be the Jackson kernel. Then Sn is a trigonometric polynomial of degree at most
2mn ≤ ((log2 L)/p+ 4)n . It is well known that

(2.5) 2−2m(cos 1)2mn−l ≤

∫ π

−π

|t|lSn(t) dt ≤ 4π2mn−l

for each 0 ≤ l < 2m− 2. Indeed, the inequalities

Sn(t) ≤ 9mn ,

Sn(t) ≤ π2mn−(2m−1)t−2m ,

|t| ≤ 1/n ,

1/n ≤ |t| ≤ π ,

are easy to establish, from where

∫ π

−π

|t|lSn(t) dt ≤

(

2π2m

|l − 2m+ 1|
+ 2 · 9m

)

n−l ≤ 4π2mn−l

is obvious for each 0 ≤ l < 2m− 2. On the other hand

Sn(t) ≥ (cos 1)2mn , |t| ≤ 1/n ,

from where
∫ π

−π

|t|lSn(t) dt ≥ 2−l(cos 1)2mn−l

for each 0 ≤ l < 2m − 2 follows. By this (2.5) is completely shown. It clearly
implies that with s = log2 L we have

(2.6) 2−2m(cos 1)2m ≤

∫ π

−π

(1 + n|t|)s/pSn(t) dt ≤ 4(2π)2m .

Now we define

(2.7) Qn(x) :=

∫ π

−π

Wn(t)
1/pSn(x − t) dt .

Then Qn is a nonnegative trigonometric polynomial of degree 2mn and

(2.8) Q′
n(x) =

∫ π

−π

Wn(t)
1/pS′

n(x− t) dt .

Applying Lemma 1.1 and (2.6), we obtain

Qn(x) =

∫ π

−π

Wn(x− t)1/pSn(t) dt

≤

∫ π

−π

Wn(x)
1/pK1/p(1 + n|t|)s/pSn(t) dt

≤ L1/p4(2π)(log2 L)/p+4Wn(x)
1/p .

The opposite inequality is simpler. For |t| ≤ 1/(2n), we have

Wn(x) ≤ LWn(x− t)
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and
Sn(t) ≥ (cos 1)2mn ,

therefore

Qn(x) ≥

∫ 1/(2n)

−1/(2n)

Wn(x− t)1/pSn(t) dt

≥ L−1/p(cos 1)2mWn(x)
1/p

∫ 1/(2n)

−1/(2n)

n dt

≥ L−1/p(cos 1)(log2
L)/p+4Wn(x)

1/p ,

and the proof of (2.2) is complete. To prove (2.3), observe that

|S′
n(t)| ≤ 2 · 9mmn2 ,

|S′
n(t)| ≤ 7π2mmn−(2m−2)t−2m ,

|t| ≤ 1/n ,

1/n ≤ |t| ≤ π ,

which follows from direct differentiation and from Bernstein’s inequality

max
−π≤t≤π

|S′
n(t)| ≤ 2mn max

−π≤t≤π
|Sn(t)| ≤ 2 · 9mmn2 ,

since (2.4) implies
max

−π≤t≤π
|Sn(t)| ≤ 9mn .

We have

∫ π

−π

|t|lS′
n(t) dt ≤

(

2 · 7π2m

|l − 2m+ 1|
+ 4 · 9mm

)

n1−l ≤ 18π2mmn1−l .

It clearly implies that with s = log2 L we have

(2.9)

∫ π

−π

(1 + n|t|)s/pS′
n(t) dt ≤ 18(2π)2mmn .

Now combining (2.8) and (2.9), we obtain

Q′
n(x) =

∫ π

−π

Wn(x − t)1/pS′
n(t) dt

≤

∫ π

−π

Wn(x)
1/pK1/p(1 + n|t|)s/pS′

n(t) dt

≤ L1/p18(2π)(log2 L)/p+4

(

log2 L

p
+ 4

)

nWn(x)
1/p .

By this (2.3) is proved. �

Proof of Theorem 2.1. As we have already remarked the case 1 ≤ p < ∞ of the
theorem follows immediately from the case 0 < p ≤ 1. To see this, if 1 ≤ p < ∞
then let m be the smallest integer not less than p. The 1 ≤ p < ∞ part of the
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theorem now follows by applying our theorem with n and p replaced by nm and
p/m ≤ 1, respectively.

So from now on let 0 < p ≤ 1. However, our next observation is valid for all
0 < p <∞. Namely we verify that there is a constant B4 depending only on p and
the doubling constant L such that for every Tn ∈ Tn we have

(2.10)

∫ π

−π

|T ′
n|

pWn ≤ B4n
p

∫ π

−π

|Tn|
pWn .

That is, Bernstein’s inequality in Lp, 0 < p < ∞, holds for trigonometric polyno-
mials Tn of degree at most n with the weight Wn. Indeed, by Theorem 2.2,

B1

∫ π

−π

|T ′
n|

pWn ≤

∫ π

−π

|T ′
nQn|

p ≤ B2

∫ π

−π

|T ′
n|

pWn .

Here
T ′
nQn = (TnQn)

′ − TnQ
′
n ,

therefore
∫ π

−π

|T ′
n|

pWn ≤ 2p
(
∫ π

−π

|(TnQn)
′|p +

∫ π

−π

|TnQ
′
n|

p

)

≤ 2p(n+N)p
∫ π

−π

|TnQn|
p + 2pB3n

p

∫ π

−π

|Tn|
pWn

≤ B4n
p

∫ π

−π

|Tn|
pWn

with a constant B4 > 0 depending only on p and on the doubling constant L, where
at the first inequality we used that (A+B)p ≤ 2p(Ap+Bp) for arbitrary A,B, p > 0;
at the second inequality, to estimate the first term, we used Bernstein’s inequality
[1] in Lp for 0 < p <∞ and for trigonometric polynomials of degree at most n+N
(N is defined in Theorem 2.2); while to estimate the second term, the bound for
|Q′

n| given by Theorem 2.2 has been used; in the third inequality Theorem 2.2 has
been used again. Thus the proof of (2.10) is complete.

Now let M be a large positive integer to be chosen later, and set

Ik :=

[

2kπ

Mn
,
2(k + 1)π

Mn

]

, k = 0, 1, . . . ,Mn− 1 .

Let ζk ∈ Ik be the place where |Tn| attains its maximum on Ik, and let θk ∈ Ik be a
place where Wn attains its maximum on Ik (note that Wn is positive continuous).
Finally we define

Rn :=
∑

|Tn(ζk)|
pWn(θk) ,

where, and in what follows, the summation is taken for k = 0, 1, . . . ,Mn− 1. Let
ξk ∈ Ik be arbitrary. Using 0 < p ≤ 1, we have

Rn −
∑

|Tn(ξk)|
pWn(θk) =

∑

(|Tn(ζk)|
p − |Tn(ξk)|

p)Wn(θk)

≤
∑

(|Tn(ζk)| − |Tn(ξk)|)
p
Wn(θk) ≤

∑

|Tn(ζk)− Tn(ξk)|
p
Wn(θk)

≤
∑

|T ′
n(τk)(ζk − ξk)|

p
Wn(θk) ≤ (Mn)−p

∑

|T ′
n(τk)|

pWn(θk)
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with appropriate τk ∈ Ik. Using the fact that for u, v ∈ Ik we have

L−1Wn(u) ≤Wn(v) ≤ LWn(u)

uniformly, then applying Theorem 2.2, we can continue

≤ (Mn)−pL
∑

|T ′
n(τk)|

pWn(τk) ≤ (Mn)−pLB−1
1

∑

|T ′
n(τk)|

p |Qn(τk)|
p .

Now using Theorem 2 of Lubinsky, Máté, and Nevai from [10] (see Lemma 2.3 after
the proof), then applying Theorem 2.2, and (2.10), we can continue

≤ (Mn)−pLB−1
1

9

2
Mn

∫ 2π

0

|T ′
nQn|

p

≤ (Mn)−pLB−1
1

9

2
B2Mn

∫ 2π

0

|T ′
n|

pWn

≤ (Mn)−pLB−1
1

9

2
B2B4Mnnp

∫ 2π

0

|Tn|
pWn

= LB−1
1

9

2
B2B4M

1−pn

∫ 2π

0

|Tn|
pWn ,

where we assume thatM ≥ (log2 L)/p+5, that isMn ≥ ((log2 L)/p+5)n ≥ N+n ,
(N is defined in Theorem 2.2), and where B1 and B2 are the same as in Theorem
2.2, while B4 is defined earlier in this proof.

Now it is clear that

∫ 2π

0

|Tn|
pWn =

∑

∫

Ik

|Tn|
pWn

≤
∑

|Ik||Tn(ζk)|
pWn(θk) =

2π

Mn
Rn .

So we have proven

Rn −
∑

|Tn(ξk)|
pWn(θk) ≤ LB−1

1

9

2
B2B4

2π

Mp
Rn

from which it follows that

Rn −
∑

|Tn(ξk)|
pWn(θk) ≤

1

2
Rn

provided

(2.11) M ≥

(

4πLB−1
1

9

2
B2B4

)1/p

+
log2 L

p
+ 5 .

Using also that

L−1Wn(θk) ≤Wn(ηk) ≤ LWn(θk)



INEQUALITIES WITH DOUBLING WEIGHTS 7

uniformly whenever ηk ∈ Ik, we obtain that for any ξk, ηk ∈ Ik we have

∑

|Tn(ξk)|
pWn(ηk) ≥

1

2L
Rn

provided (2.11). In particular, this is true for the points ξk and ηk where |Tn|
and Wn, respectively, attain their minimum on Ik, from which we obtain that all
possible sums

∑

|Tk(uk)|
pWn(vk) , uk, vk ∈ Ik

are uniformly of the same size (they are between (2L)−1Rn and Rn). If we also
observe that vk ∈ Ik implies

n

∫

Ik

W ≤Wn(vk) ≤ L(log
2
M)+1n

∫

Ik

W ,

it follows that

n

2L

∑

∫

Ik

(

max
v∈Ik

|Tn(v)|
p

)

W (u) du ≤
∑

|Tn(uk)|
pWn(vk)

≤ 2LL(log
2
M)+1n

∑

∫

Ik

(

min
v∈Ik

Tn(v)|
p

)

W (u) du

whenever uk, vk ∈ Ik. Setting uk = vk = 2kπ/(Mn) + t and integrating this with
respect to t ∈ [0, 1/(Mn)], it follows that

1

2ML

∑

∫

Ik

(

max
v∈Ik

|Tn(v)|
p

)

W (u) du ≤
∑

∫

Ik

|Tn(t)|
pWn(t) dt

≤ 2L
L(log

2
M)+1

M

∑

∫

Ik

(

min
v∈Ik

Tn(v)|
p

)

W (u) du .

We now conclude that

1

2ML

∑

∫

Ik

|Tn(t)|
pW (t) dt ≤

∑

∫

Ik

|Tn(t)|
pWn(t) dt

≤ 2L
L(log

2
M)+1

M

∑

∫

Ik

|Tn(t)|
pW (t) dt ,

which we wanted to prove. �

We remark that the crucial step of the proof of Theorem 2.1 is two applications
of Theorem 2 of Lubinsky, Máté, and Nevai from [10]. This can be formulated as
follows.

Lemma 2.3. Let 0 < p < ∞. Let ψ be a convex, nonnegative, and nondecreasing

function on [0,∞). Let

δ := min{τ2 − τ1, τ3 − τ2, . . . , τm − τm−1, 2π − (τm − τ1)} > 0 .
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Then

m
∑

j=1

ψ(|Sn(τj)|
p) ≤ (2n+ δ−1)(2π)−1

∫ 2π

0

ψ(|Sn(u)|
p(p+ 1)e/2) du

for every trigonometric polynomial Sn of degree at most n.

To demonstrate the power of Theorem 2.1 (together with Theorem 2.2) we prove
Bernstein’s Inequality in Lp, 0 < p <∞, with doubling weighs. This has been done
in the case 1 ≤ p <∞ in the Mastroianni-Totik paper [12]. We state the extended
versions of most of the remaining results of [12]. The proofs are left to the reader
who needs to observe only that in the appropriate places of the proofs in [12], one
needs to apply our Theorems 2.1 and 2.2 rather than their Theorems 3.1 and 3.2.

3. Bernstein’s Inequality in Lp, 0 < p < ∞, with Doubling Weights

Bernstein inequality plays a basic role in proving inverse theorems of approxima-
tion. The next result is a Bernstein-type inequality in Lp, 0 < p <∞, with respect
to doubling weights.

Theorem 3.1. Let W be a doubling weight, and let 0 < p < ∞ arbitrary. Then

there is a constant C > 0 depending only on p and on the doubling constant L so

that
∫ π

−π

|T ′
n|

pW ≤ Cnp

∫ π

−π

|Tn|
pW

holds for every Tn ∈ Tn.

Proof of Theorem 3.1. With the help of Theorem 2.1 and with a piece of its proof,
the proof of the theorem is a triviality now. We have already proven the theorem
with W replaced by Wn, see (2.9). What remains to observe is that Theorem 2.1
allows us to replace Wn by W . �

4. The Christoffel Function for 0 < p < ∞ with Doubling Weights

For 0 < p <∞ and x ∈ R, we define

λn(x) = λn(W, p, x) := inf
|Tn(x)|=1

∫ π

−π

|Tn|
pW ,

where the infimum is taken for all Tn ∈ Tn for which |Tn(x)| = 1. Estimates for
the Christoffel functions are useful in comparing different norms of trigonometric
polynomials, and (in the algebraic case) their magnitude plays an important role
in the study of orthogonal polynomials (mostly in the classical p = 2 setting). The
size of λn(W, p, x), where W is a doubling weight and 0 < p < ∞ is arbitrary is
given by the next theorem.
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Theorem 4.1. Let W be a doubling weight, and let 0 < p <∞ be arbitrary. Then

there is a constant C > 0 depending only on p and on the doubling constant L so

that for all n ∈ N and x ∈ R, we have

C−1

n
Wn(x) ≤ λn(W, p, x) ≤

C

n
Wn(x) .

5. The Marcinkiewicz Inequalities for

0 < p < ∞ with Doubling Weights

Marcinkiewicz-type inequalities offer a basic tool by which the (weighted) Lp

norm of a trigonometric polynomial can be replaced by a finite sum. The next
theorem offers such inequalities involving doubling weights.

Theorem 5.1. Let W be a doubling weight, and let 0 < p <∞ be arbitrary. Then

there are two constants M > 0 and C > 0 depending only on p and on the doubling

constant L such that
∫ π

−π

|Tn|
pW ≤

C

n

S
∑

j=0

Tn(ξj)|
pWn(ξj)

for every Tn ∈ Tn provided the points ξ0 < ξ1 < · · · < ξS satisfy ξj+1−ξj ≤ 1/(Mn)
and ξS ≥ ξ0 + 2π. Furthermore, for every M > 0 there is a constant C > 0
depending only on p, M and on the doubling constant L such that

1

n

S
∑

j=0

|Tn(ξj)|
pWn(ξj) ≤ C

∫ π

−π

|Tn|
pW

for every Tn ∈ Tn provided the points ξ0 < ξ1 < · · · < ξS satisfy ξj+1−ξj ≥ 1/(Mn)
and ξS ≤ ξ0 + 2π.

6. Schur Inequality for 0 < p < ∞ with Doubling Weights

Sometimes we need to get rid of a factor in an algebraic polynomial or trigono-
metric polynomial and one needs an estimate to see how the norm changes under
such a transformation. Schur-type inequalities are used in such a situation. The
next theorem offers a Schur-type inequality involving doubling weights and gener-
alized Jacobi weights.

Theorem 6.1. Let W be a doubling weight, and let 0 < p < ∞ be arbitrary. Let

H be a generalized Jacobi weight of the form

H(t) = h(t)

k
∏

j=1

|t− xj |
γj , xj , t ∈ [−π, π) , γj > 0 ,

where h is a positive measurable function bounded away from 0 and ∞. Then
∫ π

−π

|Tn|
pW ≤ CnΓ

∫ π

−π

|Tn|
pWH ,

for every Tn ∈ Tn, where Γ := max{γj : j = 1, 2, . . . , k} and C is a constant

independent of n.
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7. Remez Inequality for 0 < p < ∞ with A∞ Weights

The periodic weightW on R is called an A∞ weight (or is said to satisfy the A∞

condition) if for every α > 0 there is a β > 0 such that

W (E) ≥ βW (I)

for any interval I ⊂ R and any measurable set E ⊂ I with |E| ≥ α|I| . Similarly to
doubling weights, many equivalent definitions are known, see [12], for instance. A∞

weights are obviously doubling weights; the A∞ condition is slightly stronger than
the doubling condition. The following full analogue of the trigonometric Remez
inequality [6] (see also [12]) holds with A∞ weights.

Theorem 7.1. Let W be an A∞ weight, and let 0 < p < ∞ be arbitrary. Then

there is a constant C > 0 depending only on p and on the weight W so that if

Tn ∈ Tn and E is a measurable subset of [0, 2π] of measure at most s ∈ (0, 1], then

∫ π

−π

|Tn|
pW ≤ C1+ns

∫

[0,2π]\E

|Tn|
pW .

The same inequality with doubling weights holds provided that the exceptional
set E is not too complicated. We have

Theorem 7.2. Let W be a doubling weight, and let 0 < p <∞ be arbitrary. Then

there is a constant C > 0 depending only on p and on the doubling constant L so

that if Tn ∈ Tn and E is a measurable subset of [0, 2π] of measure at most s ∈ (0, 1]
that is a union of intervals of length at least c/n, then

∫ π

−π

|Tn|
pW ≤

(

C

c

)1+ns ∫

[0,2π]\E

|Tn|
pW .

8. Nikolskii Inequality for 0 < p < q < ∞ with A∞ Weights

Sometimes we would like to compare the Lp and Lq norms of trigonometric
polynomials. The following theorem offers such Nikolskii-type inequalities with
respect to A∞ weights.

Theorem 8.1. Let W be an A∞ weight and let 0 < p < q <∞ be arbitrary. Then

there is a constant C > 0 depending only on p and q and on the weight W so that

(
∫ π

−π

|Tn|W

)1/q

≤ Cn1/p−1/q

(
∫ π

−π

|Tn|
pW p/q

)1/p

for all Tn ∈ Tn.
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