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Abstract. Professor Rahman was a great expert of Markov- and Bernstein- type inequalities
for various classes of functions, in particular for polynomials under various constraints on

their zeros, coefficients, and so on. His books are great sources of such inequalities and related

matters. Here we do not even try to survey Rahman’s contributions to Markov- and Bernstein-
type inequalities and related results. We focus on Markov-type inequalities for products of

Müntz polynomials. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers. We denote

the linear span of xλ0 , xλ1 , . . . , xλn over R by M(Λn) := span{xλ0 , xλ1 , . . . , xλn}. Elements
of M(Λn) are called Müntz polynomials. The principal result of this paper is a Markov-type

inequality for products of Müntz polynomials on intervals [a, b] ⊂ (0,∞) which extends a less
general result proved in an earlier publication. It allows us to answer some questions asked by

Thomas Bloom recently in e-mail communications. The author believes that the new results

in this paper are sufficiently interesting and original to serve as a tribute to the memory of
Professor Rahman in this volume.

1. Introduction and Notation

Let Pn denote the family of all algebraic polynomials of degree at most n with real
coefficients. We use the notation

‖f‖A := ‖f‖L∞(A) := ‖f‖L∞A := sup
t∈A

|f(t)|

and

‖f‖LqA := ‖f‖Lq(A) :=

(∫ b

a

|f(t)|q dt

)1/q

, q > 0 ,

for measurable functions f defined on a nonempty set A ⊂ R. Two classical inequalities
for polynomials are the following.
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Markov Inequality. We have

‖f ′‖[a,b] ≤
2n2

b− a
‖f‖[a,b]

for every f ∈ Pn and for every subinterval [a, b] of the real line.

Bernstein Inequality. We have

|f ′(y)| ≤
n√

(b− y)(y − a)
‖f‖[a,b] , y ∈ (a, b) ,

for every f ∈ Pn and for every [a, b] ⊂ R.

For proofs see [4] or [16], for example. Professor Rahman was a great expert of Markov-
and Bernstein-type inequalities for various classes of functions, in particular for polyno-
mials under various constraints on their zeros, coefficients, and so on. His books [33] and
[34] are great sources of such inequalities. See also [4,19,22], for instance. Here we do not
even try to survey Rahman’s contributions to Markov- and Bernstein-type inequalities and
related results. We focus only on Markov- and Bernstein-type inequalities for products of
Müntz polynomials. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers. We denote
the linear span of xλ0 , xλ1 , . . . , xλn over R by

M(Λn) := span{xλ0 , xλ1 , . . . , xλn} .

Elements of M(Λn) are called Müntz polynomials. We denote the linear span of eλ0t, eλ1t,
. . . , eλnt over R by

E(Λn) := span{eλ0t, eλ1t, . . . , eλnt} .

Elements of E(Λn) are called exponential sums. Observe that the substitution x = et

transforms exponential sums into Müntz polynomials and the interval (−∞, 0] onto (0, 1].
Newman [31] established an essentially sharp Markov-type inequality for M(Λn).

Theorem 1.1 (Newman’s Inequality). Let Λn := {λ0 < λ1 < · · · < λn} be a set of
nonnegative real numbers. We have

2

3

n∑

j=0

λj ≤ sup
0 6≡f∈M(Λn)

|f ′(1)|

‖f‖[0,1]
≤ sup

0 6≡f∈M(Λn)

‖xf ′(x)‖[0,1]

‖f‖[0,1]
≤ 11

n∑

j=0

λj .

Frappier [28] showed that the constant 11 in Newman’s inequality can be replaced by
8.29. By modifying and simplifying Newman’s arguments, Borwein and Erdélyi [9] showed
that the constant 11 in the above inequality can be replaced by 9. But more importantly,
this modification allowed us to prove the “right” Lq version (1 ≤ q ≤ ∞) of Newman’s
inequality [9] (an L2 version of which was proved earlier by Borwein, Erdélyi, and Zhang
[13]). Note that Newman’s inequality can be rewritten as

2

3

n∑

j=0

λj ≤ sup
0 6≡g∈E(Λn)

|g′(0)|

‖g‖(−∞,0]
≤ sup

0 6≡g∈E(Λn)

‖g′‖(−∞,0]

‖g‖(−∞,0]
≤ 11

n∑

j=0

λj ,

whenever Λn := {λ0 < λ1 < · · · < λn} is a set of nonnegative real numbers.
It is non-trivial and proved by Borwein and Erdélyi [4] that under a growth condition,

‖xf ′(x)‖[0,1] in Newman’s inequality can be replaced by ‖f ′‖[0,1]. More precisely, the
following result holds.
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Theorem 1.2 (Newman’s Inequality Without the Factor x). Let

Λn := {λ0 < λ1 < · · · < λn}

be a set of nonnegative real numbers with λ0 = 0 and λj ≥ j for each j.We have

‖f ′‖[0,1] ≤ 18

(
n∑

j=0

λj

)
‖f‖[0,1]

for every f ∈ M(Λn).

It can be shown that the growth condition in Theorem 1.2 is essential. This observation
is based on an example given by Len Bos (non-published communication). The statement
below is proved in [18].

Example 1.3. For every δ ∈ (0, 1) there exists a sequence Λ := (λj)
∞
j=0 with λ0 := 0,

λ1 ≥ 1, and
λj+1 − λj ≥ δ , j = 0, 1, 2, . . .

such that with Λµ := {λ0 < λ1 < · · · < λµ} we have

lim
µ→∞

sup
0 6≡f∈M(Λµ)

|f ′(0)|(∑µ
j=0 λj

)
‖f‖[0,1]

= ∞ .

Note that the interval [0, 1] plays a special role in the study of Müntz polynomials. A
linear transformation y = αx+β does not preserve membership inM(Λn) in general (unless
β = 0), that is, f ∈ M(Λn) does not necessarily imply that g(x) := f(αx+ β) ∈ M(Λn).
Analogs of the above results on [a, b], a > 0, cannot be obtained by a simple transformation.
However, Borwein and Erdélyi [8] proved the following result.

Theorem 1.4 (Newman’s Inequality on [a, b] ⊂ (0,∞)). Let

Λn := {0 = λ0 < λ1 < · · · < λn}

be a set of real numbers. Suppose there exists a ̺ > 0 such that λj ≥ ̺j for each j. Suppose
a, b ∈ R and 0 < a < b. There exists a constant c(a, b, ̺) depending only on a, b, and ̺
such that

‖f ′‖[a,b] ≤ c(a, b, ̺)

(
n∑

j=0

λj

)
‖f‖[a,b]

for every f ∈ M(Λn).

The above theorem is essentially sharp, as one can easily deduce it from the first in-
equality of Theorem 1.1 by a linear scaling. The novelty of Theorem 1.5 proved in [2] later
is the fact that Λn := {λ0 < λ1 < . . . < λn} is an arbitrary set of n + 1 distinct real
numbers, not even the non-negativity of the exponents λj is needed.
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Theorem 1.5. Let n ≥ 1 be an integer. Let Λn := {λ0 < λ1 < · · · < λn} be a set of n+1
distinct real numbers. Suppose a, b ∈ R and 0 < a < b. We have

1

3

n∑

j=0

|λj |+
1

4 log(b/a)
(n− 1)2 ≤ sup

0 6≡f∈M(Λn)

‖xf ′(x)‖[a,b]

‖f‖[a,b]
≤ 11

n∑

j=0

|λj |+
128

log(b/a)
(n+1)2 .

Remark 1.6. Of course, we can have f ′(x) instead of xf ′(x) in the above estimate, as an
obvious corollary of the above theorem is

1

3b

n∑

j=0

|λj |+
1

4b log(b/a)
(n− 1)2 ≤ sup

0 6≡f∈M(Λn)

‖f ′‖[a,b]

‖f‖[a,b]
≤

11

a

n∑

j=0

|λj |+
128

a log(b/a)
(n+ 1)2

for every a, b ∈ R such that 0 < a < b. Observe also that Theorem 1.1 can be obtained
from Theorem 1.5 (with the constant 1/3 in the lower bound) as a limiting case by letting
a > 0 tend to 0.

The following Lq[a, b] version of Theorem 1.5 is also proved in [2] for q ≥ 1.

Theorem 1.7. Let n ≥ 1 be an integer. Let Λn := {λ0 < λ1 < · · · < λn} be a set of n+1
distinct real numbers. Suppose a, b ∈ R, 0 < a < b, and 1 ≤ q < ∞. There is a positive
constant c1(a, b) depending only on a and b such that

sup
0 6≡f∈M(Λn)

‖f ′‖Lq[a,b]

‖f‖Lq[a,b]
≤ c1(a, b)

(
n2 +

n∑

j=0

|λj |

)
.

Theorem 1.7 was proved earlier under the additional assumptions that λ0 := 0 and
λj ≥ δj for each j with a constant δ > 0 and with c1(a, b) replaced by c1(a, b, δ), see [17].
The novelty of Theorem 1.7 is the fact again that Λn := {λ0 < λ1 < · · · < λn} is an
arbitrary set of n+ 1 distinct real numbers, not even the non-negativity of the exponents
λj is needed.

In [21] the following Markov-Nikolskii-type inequality has been proved for E(Λn) on
(−∞, 0].

Theorem 1.8. Let Λn := {λ0 < λ1 < · · · < λn} be a set of nonnegative real numbers and
0 < q ≤ p ≤ ∞. Let µ be a nonnegative integer. There are constants c2 = c2(p, q, µ) > 0
and c3 = c3(p, q, µ) depending only on p, q, and µ such that

c2




n∑

j=0

λj




µ+ 1

q
− 1

p

≤ sup
0 6≡f∈E(Λn)

‖f (µ)‖Lp(−∞,0]

‖f‖Lq(−∞,0]
≤ c3




n∑

j=0

λj




µ+ 1

q
− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞ and µ ≥ 0, while the upper bound holds
when µ = 0 and 0 < q ≤ p ≤ ∞, and when µ ≥ 1, p ≥ 1, and 0 < q ≤ p ≤ ∞. Also, there
are constants c2 = c2(q, µ) > 0 and c3 = c3(q, µ) depending only on q and µ such that

c2




n∑

j=0

λj




µ+ 1

q

≤ sup
0 6≡f∈E(Λn)

|f (µ)(y)|

‖f‖Lq(−∞,y]
≤ c3




n∑

j=0

λj




µ+ 1

q
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for all 0 < q ≤ ∞, µ ≥ 1, and y ∈ R.

Motivated by a question of Michel Weber in [25] we proved the following Markov-
Nikolskii-type inequalities have been proved for E(Λn) on [a, b] ⊂ (−∞,∞).

Theorem 1.9. Suppose 0 < q ≤ p ≤ ∞, a, b ∈ R, and a < b. There are constants
c4 = c4(p, q, a, b) > 0 and c5 = c5(p, q, a, b) depending only on p, q, a, and b such that

c4


n2 +

n∑

j=0

|λj |




1

q
− 1

p

≤ sup
0 6≡f∈E(Λn)

‖f‖Lp[a,b]

‖f‖Lq[a,b]
≤ c5


n2 +

n∑

j=0

|λj |




1

q
− 1

p

.

Theorem 1.10. Suppose 0 < q ≤ p ≤ ∞, a, b ∈ R, and a < b. There are constants
c6 = c6(p, q, a, b) > 0 and c7 = c7(p, q, a, b) depending only on p, q, a, and b such that

c6



n2 +

n∑

j=0

|λj|




1+ 1

q
− 1

p

≤ sup
0 6≡f∈E(Λn)

‖f ′‖Lp[a,b]

‖f‖Lq[a,b]
≤ c7



n2 +

n∑

j=0

|λj |




1+ 1

q
− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞, while the upper bound holds when
p ≥ 1 and 0 < q ≤ p ≤ ∞.

We note that even more general Nikolskii-type inequalities are proved in [12] for shift
invariant function spaces.

Müntz’s classical theorem characterizes the sequences Λ := (λj)
∞
j=0 with

0 = λ0 < λ1 < λ2 < · · ·

for which the Müntz space

M(Λ) := span{xλ0 , xλ1 , . . .}

is dense in C[0, 1]. Here span{xλ0 , xλ1 , . . .} denotes the collection of all finite linear com-
binations of the functions xλ0 , xλ1 , . . . with real coefficients, and C(A) is the space of all
real-valued continuous functions on A ⊂ [0,∞) equipped with the supremum norm. If
A := [a, b] is a finite closed interval, then the notation C[a, b] := C([a, b]) is used. Müntz’s
Theorem states the following.

Müntz’s Theorem. Suppose 0 = λ0 < λ1 < λ2 < · · · . The space M(Λ) is dense in
C[0, 1] if and only if

∑∞
j=1 1/λj = ∞.

Proofs are available in [4,14,16], for example. The original Müntz Theorem proved
by Müntz [30] and Szász [38] and anticipated by Bernstein [3] was only for sequences of
exponents tending to infinity. There are many generalizations and variations of Müntz’s
Theorem. See [4], [5], [6], [7], [27], [20], [15], [16], [39], [29], and [35] among others. There
are also many problems still open today.
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Somorjai [37] in 1976 and Bak and Newman [1] in 1978 proved that

R(Λ) := {p/q : p, q ∈ M(Λ)}

is always dense in C[0, 1] whenever Λ := (λj)
∞
j=0 contains infinitely many distinct real

numbers. This surprising result says that while the set M(Λ) of Müntz polynomials may
be far from dense, the set R(Λ) of Müntz rationals is always dense in C[0, 1], whenever
the underlying sequence Λ contains infinitely many distinct real numbers. In the light of
this result, Newman [32] (p. 50) raises “the very sane, if very prosaic question”. Are the
functions

k∏

j=1

(
nj∑

m=0

am,jx
m2

)
, am,j ∈ R , nj ∈ N ,

dense in C[0, 1] for some fixed k ≥ 2 ? In other words does the “extra multiplication”
have the same power that the “extra division” has in the Bak-Newman-Somorjai result?
Newman speculated that it did not.

Denote the set of the above products by Hk. Since every natural number is the sum
of four squares, H4 contains all the monomials xn, n = 0, 1, 2, . . . . However, Hk is not
a linear space, so Müntz’s Theorem itself cannot be applied to resolve the denseness or
non-denseness of H4 in C[0, 1].

Borwein and Erdélyi [4,5,10] deal with products of Müntz spaces and, in particular, the
question of Newman is answered in the negative. In fact, in [6] we presented a number
of inequalities each of which implies the answer to Newman’s question. One of them is
the following bounded Bernstein-type inequality for products of Müntz polynomials from
non-dense Müntz spaces. For

Λ(j) := (λi,j)
∞
i=0 , 0 = λ0,j < λ1,j < λ2,j < · · · , j = 1, 2, . . . ,

we define the sets

M(Λ(1),Λ(2), . . . ,Λ(k)) :=



f =

k∏

j=1

fj : fj ∈ M(Λ(j))



 .

Theorem 1.11. Suppose

Λ(j) := (λi,j)
∞
i=0 , 0 = λ0,j < λ1,j < λ2,j < · · · , j = 1, 2, . . . , k ,

and
∞∑

i=1

1

λi,j
< ∞ and λ1,j ≥ 1 , j = 1, 2, . . . , k .

Let s > 0. There exits a constant c depending only on Λ(1),Λ(2), . . . ,Λ(k), s, and k (and
not on ̺ or A) such that

‖f ′‖[0,̺] ≤ c ‖f‖A
6



for every f ∈ M(Λ(1),Λ(2), . . . ,Λ(k)) and for every set A ⊂ [̺, 1] of Lebesgue measure at
least s.

In [18] the right Markov-type inequalities for products of Müntz polynomials are es-
tablished when the factors come from arbitrary (not necessarily non-dense) Müntz spaces.
More precisely, associated with the sets

Λn := {λ0 < λ1 < · · · < λn} and Γm := {γ0 < γ1 < · · · < γm}

of real numbers we examined the magnitude of

(1.1) K(M(Λn),M(Γm)) := sup

{
‖x(pq)′(x)‖[0,1]

‖pq‖[0,1]
: 0 6≡ p ∈ M(Λn) , 0 6≡ q ∈ M(Γm)

}
,

(1.2) K̃(M(Λn),M(Γm), a, b) := sup

{
‖(pq)′‖[a,b]

‖pq‖[a,b]
: 0 6≡ p ∈ M(Λn) , 0 6≡ q ∈ M(Γm)

}
,

where [a, b] ⊂ [0,∞), and

(1.3) K̃(E(Λn), E(Γm), a, b) := sup

{
‖(pq)′‖[a,b]
‖pq‖[a,b]

: 0 6≡ p ∈ E(Λn) , 0 6≡ q ∈ E(Γm)

}
,

where [a, b] ⊂ (−∞,∞).

The result below proved in [18] is an essentially sharp Newman-type inequality for
products of Müntz polynomials.

Theorem 1.12. Let

Λn := {0 = λ0 < λ1 < · · · < λn} and Γm := {0 = γ0 < γ1 < · · · < γm} .

Let K(M(Λn),M(Γm)) be defined by (1.1). We have

1

3
((m+ 1)λn + (n+ 1)γm) ≤ K(M(Λn),M(Γm)) ≤ 18 (n+m+ 1)(λn + γm) .

In particular,
2

3
(n+ 1)λn ≤ K(M(Λn),M(Λn)) ≤ 36 (2n+ 1)λn .

The factor x from ‖x(pq)′(x)‖[0,1] in Theorem 1.12 can be dropped in the expense of a
growth condition. The result below proved in [18] establishes an essentially sharp Markov-
type inequality on [0, 1].
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Theorem 1.13. Let

Λn := {0 = λ0 < λ1 < · · · < λn} and Γm := {0 = γ0 < γ1 < · · · < γm}

with λj ≥ j and γj ≥ j for each j. Let K̃(M(Λn),M(Γm), 0, 1) be defined by (1.2). We
have

1

3
((m+ 1)λn + (n+ 1)γm) ≤ K̃(M(Λn),M(Γm), 0, 1) ≤ 36 (n+m+ 1)(λn + γm) .

In particular,

2

3
(n+ 1)λn ≤ K̃(M(Λn),M(Λn), 0, 1) ≤ 72 (2n+ 1)λn .

Under a growth condition again, Theorem 1.13 can be extended to the interval [0, 1]
replaced by [a, b] ⊂ (0,∞). The essentially sharp Markov-type inequality below is also
proved in [18].

Theorem 1.14. Let

Λn := {0 = λ0 < λ1 < · · · < λn} and Γm := {0 = γ0 < γ1 < · · · < γm} .

Suppose there exists a ̺ > 0 such that λj ≥ ̺j and γj ≥ ̺j for each j. Suppose a, b ∈ R and

0 < a < b. Let K̃(Mn(Λ),Mm(Γ), a, b) be defined by (1.2). There is a constant c(a, b, ̺)
depending only on a, b, and ̺ such that

b

3
((m+ 1)λn + (n+ 1)γm) ≤ K̃(M(Λn),M(Γm), a, b) ≤ c(a, b, ̺) (n+m+ 1)(λn + γm) .

In particular,

2b

3
(n+ 1)λn ≤ K̃(M(Λn),M(Λn), a, b) ≤ 2 c(a, b, ̺) (2n+ 1)λn .

Remark 1.15 Analogs of the above three theorems dealing with products of several Müntz
polynomials can also be proved by straightforward modifications.
Remark 1.16 Let λj = γj := j2, j = 0, 1, . . . , n. If we multiply pq out, where p, q ∈
M(Λn), and we apply Newman’s inequality, we get

K(Mn(Λ),Mn(Λ)) ≤ cn4

with an absolute constant c. However, if we apply Theorem 1.12, we obtain

K(Mn(Λ),Mn(Λ)) ≤ 36 (2n+ 1)n2 .

It is quite remarkable that K(Mn(Λ),Mn(Λ)) is of the same order of magnitude as the

Markov factor 11
(∑n

j=0 j
2
)
in Newman’s inequality for Mn(Λ). When the exponents λj

grow sufficiently slowly, similar improvements can be observed in each of our Theorems
1.12–1.14 compared with the “natural first idea” of “multiply out and use Newman’s
inequality”.

The essentially sharp Bernstein-type inequality below for

En :=

{
f : f(t) = a0 +

n∑

j=1

aje
λjt , aj , λj ∈ R

}
=
⋃

E(Λn)

is proved in [8] (the union above is taken for all Λn = {λ0 < λ1 < · · · < λn} for which
0 ∈ Λn).
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Theorem 1.17. We have

1

e− 1

n− 1

min{y − a, b− y}
≤ sup

0 6≡f∈En

|f ′(y)|

‖f‖[a,b]
≤

2n− 1

min{y − a, b− y}
, y ∈ (a, b) .

We note that pointwise Remez- and Nikolskii-type inequalities for En are also proved
in [11].

2. New Results

The results of this section were motivated by e-mail communications with Thomas
Bloom who was interested in Corollaries 2.3–2.6 in particular.

We examine what happens when in Theorem 1.14 we drop the growth condition “there
exists a ̺ > 0 such that λj ≥ ̺j and γj ≥ ̺j for each j”.

Modifying the proof of Theorem 1.14 we can prove the result below.

Theorem 2.1. Let Λn := {λ0 < λ1 < · · · < λn} and Γm := {γ0 < γ1 < · · · < γm} be sets
of real numbers such that λ0 ≤ 0 ≤ λn and γ0 ≤ 0 ≤ γm. Suppose a, b ∈ R and 0 < a < b.

Let K̃(M(Λn),M(Γm), a, b) be defined by (1.2). We have

K̃(M(Λn),M(Γm), a, b) ≤ 22(n+m+ 1)(λn − λ0 + γm − γ0) +
512

log(b/a)
(n+m+ 1)2 .

If, in addition, λ0 = γ0 = 0, then

1

6
((m+ 1)λn + (n+ 1)γm) +

1

16 log(b/a)
(n+m− 2)2 ≤ K̃(M(Λn),M(Γm), a, b) .

Corollary 2.2. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers such that
λ0 ≤ 0 ≤ λn. Suppose a, b ∈ R and 0 < a < b. Let

K̃(M(Λn),M(Λn), a, b)

be defined by (1.2). We have

K̃(M(Λn),M(Λn), a, b) ≤ 44(2n+ 1)(λn − λ0) +
512

log(b/a)
(2n+ 1)2 .

If, in addition, λ0 = 0, then

1

3
(n+ 1)λn +

1

4
log(b/a)(n− 1)2 ≤ K̃(M(Λn),M(Λn), a, b) .

By using the substitution x = et it is easy to see that the theorem below is equivalent
to Theorem 2.1.
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Theorem 2.1*. Let Λn := {λ0 < λ1 < · · · < λn} and Γm := {γ0 < γ1 < · · · < γm} be
sets of real numbers such that λ0 ≤ 0 ≤ λn, γ0 ≤ 0 ≤ γm. Suppose a, b ∈ R and a < b. Let

K̃(E(Λn), E(Γm), a, b)

be defined by (1.3). We have

K̃(E(Λn), E(Γm), a, b) ≤ 22(n+m+ 1)(λn − λ0 + γm − γ0) +
512

b− a
(n+m+ 1)2 .

If, in addition, λ0 = γ0 = 0, then

1

6
((m+ 1)λn + (n+ 1)γm) +

1

16(b− a)
(n+m− 2)2 ≤ K̃(E(Λn), E(Γm), a, b) .

Corollary 2.2*. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers such that
λ0 ≤ 0 ≤ λn. Suppose a, b ∈ R and a < b. Let

K̃(E(Λn), E(Λn), a, b)

be defined by (1.3). We have

K̃(E(Λn), E(Λn), a, b) ≤ 22(2n+ 1)λn +
512

b− a
(2n+ 1)2 .

If, in addition, λ0 = 0, then

1

3
(n+ 1)λn +

1

4
(b− a)(n− 1)2 ≤ K̃(E(Λn), E(Λn), a, b) .

Theorem 2.1 gives the size of

(2.1) K̃(Pn,Pm, a, b, α, β) := sup

{∥∥ d
dx
(p(xα)q(xβ))

∥∥
[a,b]

‖p(xα)q(xβ)‖[a,b]
: p ∈ Pn , q ∈ Pm

}

immediately for real numbers 0 < a < b, α > 0, and β > 0.

Corollary 2.3. Suppose a, b, α, β ∈ R, 0 < a < b, α > 0, and β > 0. Let

K̃(Pn,Pm, a, b, α, β)

be defined by (2.1). We have

K̃(Pn,Pm, a, b, α, β) ≤ 22(n+m+ 1)(nα+mβ) +
512

b− a
(n+m+ 1)2

and

1

6
((m+ 1)nα+ (n+ 1)mβ) +

1

16(b− a)
(n+m− 2)2 ≤ K̃(Pn,Pm, a, b, α, β) .

10



Corollary 2.4. Suppose a, b, α, β ∈ R, 0 < a < b, α > 0, and β > 0. Let

K̃(Pn,Pm, a, b, α, β)

be defined by (2.1). We have

K̃(Pn,Pm, a, b, α, β) ∼ (n+m)2 ,

where x ∼ y means that c1 ≤ x/y ≤ c2 with some constants c1 > 0 and c2 > 0 depending
only on a, b, α, and β.

Finding the size of

K̃(E(Λn),Pm, a, b) := sup

{
‖pq)′‖[a,b]

‖pq‖[a,b]
: p ∈ E(Λn) , q ∈ Pm

}

can also be viewed as a special case of Theorem 2.1*.

Corollary 2.5. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers such that
λ0 ≤ 0 ≤ λn. Suppose a, b ∈ R and a < b. We have

K̃(E(Λn),Pm, a, b) ≤ 22(n+m+ 1)(λn − λ0) +
512

b− a
(n+m+ 1)2 .

If, in addition, λ0 = 0, then

1

6
(m+ 1)λn +

1

16(b− a)
(n+m− 2)2 ≤ K̃(E(Λn),Pm, a, b) .

As a special case of Corollary 2.5 we record the following.

Corollary 2.6. Suppose a, b ∈ R and a < b. Let Λn := {0, 1, . . . , n}. We have

K̃(E(Λn),Pm, a, b) ∼ (n+m)2 ,

where x ∼ y means that c1 ≤ x/y ≤ c2 with some constants c1 > 0 and c2 > 0 depending
only on a and b.

Let Γm := {0 = γ0 < γ1 < · · · < γm} be a set of nonnegative real numbers. We denote
the collection of all linear combinations of

1, cosh(γ1t), cosh(γ2t), . . . , cosh(γmt)

over R by
G(Γm) := span{1 , cosh(γ1t) , cosh(γ2t) , . . . , cosh(γmt)} .

Our next result is a Bernstein-type inequality for product of exponential sums. It would
be desirable to replace G(Γm) with E(Γm) in the theorem below but our method of proof
does not seem to allow us to do so.

Theorem 2.7. Let

Λn := {λ0 < λ1 < · · · < λn} and Γm := {0 = γ0 < γ1 < · · · < γm}

be sets of real numbers. We have

|f ′(0)| ≤ (2n+ 2m+ 1)‖f‖[−1,1]

for all f of the form
f = pq, p ∈ E(Λn), q ∈ G(Γm) .

11



3. Lemmas for Theorem 2.1*

Our first four lemmas have been stated as Lemmas 3.1–3.4 in [22], where their proofs
are also presented. Our first lemma can be proved by a simple compactness argument and
may be viewed as a simple exercise.

Lemma 3.1. Let ∆n := {δ0 < δ1 < · · · < δn} be a set of real numbers. Let a, b, c ∈ R and
a < b. Let 0 6≡ w be a continuous function defined on [a, b]. Let q ∈ (0,∞]. There exists a
0 6≡ T ∈ E(∆n) such that

|T (c)|

‖Tw‖Lq[a,b]
= sup

{
|P (c)|

‖Pw‖Lq[a,b]
: 0 6≡ P ∈ E(∆n)

}
,

and there exists a 0 6≡ S ∈ E(∆n) such that

|S′(c)|

‖Sw‖Lq[a,b]
= sup

{
|P ′(c)|

‖Pw‖Lq[a,b]
: 0 6≡ P ∈ E(∆n)

}
.

Our next lemma is an essential tool in proving our key lemmas, Lemmas 3.3 and 3.4.

Lemma 3.2. Let ∆n := {δ0 < δ1 < · · · < δn} be a set of real numbers. Let a, b, c ∈ R

and a < b < c. Let q ∈ (0,∞]. Let T and S be the same as in Lemma 3.1. The function
T has exactly n zeros in [a, b] by counting multiplicities. Under the additional assumption
δn ≥ 0, the function S also has exactly n zeros in [a, b] by counting multiplicities.

The heart of the proof of our theorems is the following pair of comparison lemmas.
Lemmas 3.3 and 3.4 below are proved in [24] based on Descartes’ Rule of Sign and a
technique used earlier by Pinkus and P.W. Smith [36].

Lemma 3.3. Let ∆n := {δ0 < δ1 < · · · < δn} and Γn := {γ0 < γ1 < · · · < γn} be sets of
real numbers satisfying δj ≤ γj for each j = 0, 1, . . . , n. Let a, b, c ∈ R and a < b ≤ c. Let
0 6≡ w be a continuous function defined on [a, b]. Let q ∈ (0,∞]. We have

sup

{
|P (c)|

‖Pw‖Lq[a,b]
: 0 6≡ P ∈ E(∆n)

}
≤ sup

{
|P (c)|

‖Pw‖Lq[a,b]
: 0 6≡ P ∈ E(Γn)

}
.

Under the additional assumption δn ≥ 0 we also have

sup

{
|P ′(c)|

‖Pw‖Lq[a,b]
: 0 6≡ P ∈ E(∆n)

}
≤ sup

{
|P ′(c)|

‖Pw‖Lq[a,b]
: 0 6≡ P ∈ E(Γn)

}
.

Lemma 3.4. Let ∆n := {δ0 < δ1 < · · · < δn} and Γn := {γ0 < γ1 < · · · < γn} be sets of
real numbers satisfying δj ≤ γj for each j = 0, 1, . . . , n. Let a, b, c ∈ R and c ≤ a < b. Let
0 6≡ w be a continuous function defined on [a, b]. Let q ∈ (0,∞]. We have

sup

{
|P (c)|

‖Pw‖Lq[a,b]
: 0 6≡ P ∈ E(∆n)

}
≥ sup

{
|P (c)|

‖Pw‖Lq[a,b]
: 0 6≡ P ∈ E(Γn)

}
.

Under the additional assumption γ0 ≤ 0 we also have

sup

{
|Q′(c)|

‖Qw‖Lq[a,b]
: 0 6≡ Q ∈ E(∆n)

}
≥ sup

{
|Q′(c)|

‖Qw‖Lq[a,b]
: 0 6≡ Q ∈ E(Γn)

}
.

We will also need the following result which may be obtained from Theorem 1.5 by a
substitution x = et.

12



Lemma 3.5. Let n ≥ 1 be an integer. Let Λn := {λ0, λ1, . . . , λn} be a set of n+1 distinct
real numbers. Let a, b ∈ R and 0 < a < b.We have

1

3

n∑

j=0

|λj |+
1

4(b− a)
(n− 1)2 ≤ sup

0 6≡P∈E(Λn)

‖P ′‖[a,b]

‖P‖[a,b]
≤ 11

n∑

j=0

|λj|+
128

b− a
(n+ 1)2 .

4. Lemmas for Theorem 2.7

Let Λn := {λ0 < λ1 < · · · < λn} be a set of distinct positive real numbers. We denote
the collection of all linear combinations of

sinh(λ0t), sinh(λ1t), . . . , sinh(λnt)

over R by
H(Λn) := span{sinh(λ0t), sinh(λ1t), . . . , sinh(λnt)} .

The first lemma is stated and proved in Section 4 of [23].

Lemma 4.1. Let Λn := {λ0 < λ1 < · · · < λn} and Γn := {γ0 < γ1 < · · · < γn} be
sets of positive real numbers satisfying λj ≤ γj for each j = 0, 1, . . . , n. Let a, b ∈ R and
0 ≤ a < b. Let 0 6≡ w be a continuous function defined on [a, b]. Let q ∈ (0,∞]. We have

sup

{
|P ′(0)|

‖Pw‖Lq[a,b]
: P ∈ H(Γn)

}
≤ sup

{
|P ′(0)|

‖Pw‖Lq[a,b]
: P ∈ H(Λn)

}
.

As before, associated with Λn := {0 = λ0 < λ1 < · · · < λn}, we denote the collection of
all linear combinations of

1 , cosh(λ1t) , cosh(λ2t) , . . . , cosh(λnt)

over R by
G(Λn) := span{1 , cosh(λ1t) , cosh(λ2t) , . . . , cosh(λnt)} .

The next lemma is stated and proved in Section 3 of [26].

Lemma 4.2. Let

Λn := {0 = λ0 < λ1 < · · · < λn} and Γn := {0 = γ0 < γ1 < · · · < γn}

be sets of nonnegative real numbers satisfying λj ≤ γj for each j = 0, 1, . . . , n. Let a, b ∈ R

and 0 ≤ a < b. Let 0 6≡ w be a continuous function defined on [a, b]. Let q ∈ (0,∞]. We
have

sup

{
|P (0)|

‖Pw‖Lq[a,b]
: P ∈ G(Γn)

}
≤ sup

{
|P (0)|

‖Pw‖Lq[a,b]
: P ∈ G(Λn)

}
.
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4. Proofs

Proof of Theorem 2.1*. First we prove the lower bound of the theorem. The lower bound
of Lemma 3.5 guarantees a

0 6≡ f ∈ span{e(λn+γ0)t, e(λn+γ1)t, . . . , e(λn+γm)t}

such that

‖f ′‖[a,b] ≥

(
1

3

m∑

j=0

(λn + γj) +
1

4(b− a)
(m− 1)2

)
‖f‖[a,b]

≥

(
1

3
(m+ 1)λn +

1

4(b− a)
(m− 1)2

)
‖f‖[a,b] .

Observe that f = pq with p ∈ E(Λn) defined by p(x) := eλnt and with some q ∈ E(Γm).
Similarly, the lower bound of Lemma 3.5 guarantees a

0 6≡ f ∈ span{e(γm+λ0)t, e(γm+λ1)t, . . . , e(γm+λn)t}

such that

‖f ′‖[a,b] ≥

(
1

3

n∑

j=0

(γm + λj) +
1

4(b− a)
(n− 1)2

)
‖f‖[a,b]

≥

(
1

3
(n+ 1)γm +

1

4(b− a)
(n− 1)2

)
‖f‖[a,b] .

Observe that f = pq with some p ∈ E(Λn) and with q ∈ E(Γm) defined by q(x) := eγmt.
Hence the lower bound of the theorem is proved.

We now prove the upper bound of the theorem. We want to prove that

(4.1) |(p′q)(y)| ≤ 11(n+m+ 1)(λn − λ0 + γm − γ0) +
256

b− a
(n+m+ 1)2 ‖pq‖[a,b]

for every p ∈ E(Λn), q ∈ E(Γm), and y ∈ [a, b]. The rest follows from the product rule of
differentiation (the role of Λn and Γm can be interchanged). For α < β let

M(n,m, α, β) := 11(n+m+ 1)(λn − λ0 + γm − γ0) +
128

β − α
(n+m+ 1)2 .

Let d := (a+ b)/2 ∈ (a, b).
First let y ∈ [d, b]. We show that

(4.2) |(p′q)(y)| ≤ M(n,m, a, y) ‖pq‖[a,y]
14



for every p ∈ E(Λn) and q ∈ E(Γm). To show (4.4), it is sufficient to prove that

(4.3) |p′q)(y)| ≤ (1 + η)M(n,m, a, y) ‖pq‖[a,y−δ]

for every p ∈ E(Λn) and q ∈ E(Γm), where η denotes a quantity that tends to 0 as
δ ∈ (0, y− a) tends to 0. The rest follows by taking the limit when δ ∈ (0, y − a) tends to
0.

To see (4.3), by Lemmas 3.3 and 3.4 we may assume that

λj := λn − (n− j)ε , j = 0, 1, . . . , n ,

γj := γm − (m− j)ε , j = 0, 1, . . . , m ,

for some ε > 0. By Lemma 3.2 we may also assume that p has n zeros in (a, y − δ) and q
has m zeros in (a, y−δ). We normalize p and q so that p(y) > 0 and q(y) > 0. Then, using
the information on the zeros of p and q, we can easily see that p′(y) > 0 and q′(y) > 0.
Therefore

|(p′q)(b)| ≤ |(pq)′(b)| .

Now observe that f := pq ∈ E(Ωk), where k := n +m and Ωk := {ω1 < ω2 < · · · < ωk}
with

ωj := λn + γm − (n+m− j)ε , j = 0, 1, . . . , k .

Hence Lemma 3.5 implies

|(p′q)(y)| ≤ |(pq)′(y)| = |f ′(y)| ≤ M(n,m, a, y) ‖f‖[a,y] = M(n,m, a, y) ‖pq‖[d,b] .

By this (4.3), and hence (4.2), is proved. Combining (4.2) with

M(n,m, a, y) = 11(n+m+ 1)(λn − λ0 + γm − γ0) +
128

y − a
(n+m+ 1)2

= 11(n+m+ 1)(λn − λ0 + γm − γ0) +
256

b− a
(n+m+ 1)2 ,

we conclude (4.3) for all y ∈ [d, b].
Now let y ∈ [a, d]. We show that

(4.4) |(p′q)(y)| ≤ K(n,m, y, b)‖pq‖[y,b]

for every p ∈ E(Λn) and q ∈ E(Γm). To show (4.4), it is sufficient to prove that

(4.5) |(p′q)(y)| ≤ (1 + η)M(n,m, y, b) ‖pq‖[y+δ,b]

for every p ∈ E(Λn) and q ∈ E(Γm), where η denotes a quantity that tends to 0 as
δ ∈ (0, b− y) tends to 0. The rest follows by taking the limit when δ ∈ (0, b− y) tends to
0.
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To see (4.5), by Lemmas 3.3 and 3.4 we may assume that

λj := λ0 + εj , j = 0, 1, . . . , n ,

γj := γ0 + εj , j = 0, 1, . . . , m ,

with a sufficiently small ε > 0. By Lemma 3.2 we may also assume that p has n zeros
in (y + δ, b) and q has m zeros in (y + δ, b). We normalize p and q so that p(y) > 0 and
q(y) > 0. Then, using the information on the zeros of p and q, we can easily see that
p′(y) < 0 and q′(y) < 0. Therefore

|(p′q)(y)| ≤ |(pq)′(y)| .

Now observe that f := pq ∈ E(Ωk), where k := n +m and Ωk := {ω1 < ω2 < · · · < ωk}
with

ωj := λ0 + γ0 + jε , j = 0, 1, . . . , k .

Hence Lemma 3.5 implies

|(p′q)(y)| ≤ |(pq)′(y)| = |f ′(y)| ≤ M(n,m, y, b) ‖f‖[y,b] = M(n,m, y, b) ‖pq‖[y,b] .

By this (4.5), and hence (4.4), is proved. Combining (4.4) with

M(n,m, y, b) = 11(n+m+ 1)(λn − λ0 + γm − γ0) +
128

b− y
(n+m+ 1)2

≤ 11(n+m+ 1)(λn − λ0 + γm − γ0) +
256

b− a
(n+m+ 1)2 ,

we conclude (4.1) for all y ∈ [a, d]. The proof of the theorem is now complete. �

Corollaries 2.3 and 2.4 follow from Theorem 2.1 immediately.

Proof of Corollary 2.5. Observe that

t = lim
ε→0+

eεt − 1

ε
,

hence every q ∈ Pm and η > 0 there is a sufficiently small ε > 0 and a

qε ∈ E(Γm,ε) := span{0, ε, 2ε, . . . , mε}

such that
‖qε − q‖[a,b] < η and ‖q′ε − q′‖[a,b] < η .

Therefore the corollary follows from Theorem 2.1* as a limit case. �

Corollary 2.6 follows from Corollary 2.5 immediately.

Proof of Theorem 2.7. Let

f = pq, p ∈ E(Λn), q ∈ G(Γm) .
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Observe that q ∈ G(Γm) is even, hence q(t) = q(−t) for all t, and q′(0) = 0. Hence,
replacing p with p̃ defined by p̃(t) := (p(t)− p(−t))/2 we have (p̃q)′(0) = (pq)′(0) and

‖p̃q‖[−1,1] ≤ ‖pq‖[−1,1] ,

without loss of generality we may assume that

Λn+1 = {λ0 < λ1 < · · · < λn+1} ⊂ (0,∞)

and p ∈ H(Λn+1). So let f = pq with p ∈ H(Λn+1) and q ∈ G(Γm), where

Λn+1 := {λ0 < λ1 < · · · < λn+1} ⊂ (0,∞) and Γm := {0 = γ0 < γ1 < · · · < γm} .

As ‖pq‖[−1,1] = ‖pq‖[0,1], we want to prove that

(4.6) |(pq)′(0)| = |p′q)(0)| ≤ (2n+ 2m+ 1)‖pq‖[0,1]

for all p ∈ H(Λn+1) and q ∈ G(Γm). To prove (4.6), by Lemmas 4.1 and 4.2 we may
assume that

λj := jε , j = 0, 1, . . . , n+ 1 ,

γj := jε , j = 0, 1, . . . , m ,

for some ε > 0. Now observe that f := pq ∈ H(Ωk), where k := n+m+ 1 and

Ωk := {ω1 < ω2 < · · · < ωk}

with
ωj := jε , j = 0, 1, . . . , k .

Hence Theorem 1.17 implies (4.6). �
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spaces, J. Amer. Math. Soc. 10 (1997), 327–349.
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20. T. Erdélyi, The full Clarkson-Erdős-Schwartz Theorem on the uniform closure of non-dense Müntz
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21. T. Erdélyi, Extremal properties of the derivatives of the Newman polynomials, Proc. Amer. Math.

Soc. 131 (2003), 3129–3134.
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25. T. Erdélyi, Markov-Nikolskii type inequalities for exponential sums on a finite interval, Adv. Math.

208 (2007), 135–146.
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Montrèal, 1983.

34. Q.I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002.

35. L. Schwartz, Etude des Sommes d’Exponentielles, Hermann, Paris, 1959.

36. P.W. Smith, An improvement theorem for Descartes systems, Proc. Amer. Math. Soc. 70 (1978),

26–30.
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