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Abstract. Let Pn denote the set of all algebraic polynomials of degree at most n with real

coefficients. Associated with a set of poles {a1, a2, . . . , an} ⊂ R\ [−1, 1] we define the rational
function spaces

Pn(a1, a2, . . . , an) :=

8<
:f : f(x) = b0 +

nX
j=1

bj

x− aj
, b0, b1, . . . , bn ∈ R

9=
; .

Associated with a set of poles {a1, a2, . . . } ⊂ R\[−1, 1] , we define the rational function spaces

P(a1, a2, . . . ) :=
∞[

n=1

Pn(a1, a2, . . . , an) .

It is an interesting problem to charcterize sets {a1, a2, . . . } ⊂ R\[−1, 1] for which P(a1, a2, . . . )

is not dense in C[−1, 1], where C[−1, 1] denotes the space of all continuous functions equipped

with the uniform norm on [−1, 1]. Akhieser showed that the density of P(a1, a2, . . . ) is

characterized by the divergence of the series
P∞

n=1

p
a2

n − 1.
In this paper we show that the so-called Clarkson-Erdős-Schwartz phenomenon occurs in

the non-dense case. Namely, if P(a1, a2, . . . ) is not dense in C[−1, 1], then it is “very much

not so”. More precisely, we prove the following result.

Theorem. Let {a1, a2, . . . } ⊂ R \ [−1, 1]. Suppose P(a1, a2, . . . ) is not dense in C[−1, 1],

that is,
∞X

n=1

q
a2

n − 1 < ∞ .

Then every function in the uniform closure of P(a1, a2, . . . ) in C[−1, 1] can be extended

analytically throughout the set C \ {−1, 1, a1, a2, . . . }.
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Throughout this paper ‖f‖A will denote the uniform norm of a continuous function f
on a set A ⊂ C. Let Pn denote the set of all algebraic polynomials of degree at most n
with real coefficients. Associated with a set of poles {a1, a2, . . . , an} ⊂ R\ [−1, 1] we define
the rational function spaces

Pn(a1, a2, . . . , an) :=


f : f(x) = b0 +

n∑
j=1

bj

x− aj
, b0, b1, . . . , bn ∈ R


 .

Note that every f ∈ Pn(a1, a2, . . . , an) can be written as f = p/q with

p ∈ Pn and q(x) =
n∏

j=1

(x− aj) .

Associated with a set of poles

{a1, a2, . . .} ⊂ R \ [−1, 1] ,

we define the rational function spaces

P(a1, a2, . . . ) :=
∞⋃

n=0

Pn(a1, a2, . . . , an) .

It is an interesting problem to charcterize sets {a1, a2, . . .} ⊂ R \ [−1, 1] for which
P(a1, a2, . . . ) is not dense in C[−1, 1], where C[−1, 1] denotes the space of all continuous
functions equipped with the uniform norm on [−1, 1]. Akhieser presents the answer (which
is recaptured in [BE], see Corollary 4.3.4 on page 208) in his book by proving the following
result.

Theorem (Akhieser). Let {a1, a2, . . . } ⊂ R \ [−1, 1]. Then P(a1, a2, . . . ) is dense in
C[−1, 1] if and only if

∞∑
n=1

√
a2

n − 1 = ∞ .

In this paper we show that the so-called Clarkson-Erdős-Schwartz phenomenon occurs
in the non-dense case. Namely if P(a1, a2, . . . ) is not dense in C[−1, 1], then it is ”very
much not so”. More precisely, we prove the following result.

Theorem 1. Let {a1, a2, . . .} ⊂ R\[−1, 1]. Suppose P(a1, a2, . . . ) is not dense in C[−1, 1],
that is,

∞∑
n=1

√
a2

n − 1 < ∞ .

Then every function in the uniform closure of P(a1, a2, . . . ) in C[−1, 1] can be extended
analytically throughout the set C \ {−1, 1, a1, a2, . . .}.

Theorem 1 follows immediately from our main result below.
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Theorem 2. Suppose (aj) is a sequence with each aj ∈ R \ [−1, 1] . Suppose

∞∑
j=1

√
a2

j − 1 < ∞ .

Then there is a constant Cη depending only on η > 0 and the sequence (aj) such that

|f(z)| ≤ Cη‖f‖[−1,1]

for every f ∈ P(a1, a2, . . . ) and z ∈ C \ {a1, a2, . . . } such that the distance dist(z, {−1, 1})
between the point z and the set {−1, 1, a1, a2, . . .} is at least η > 0.

Theorem 2 is the key observation of this paper. Theorem 1 follows immediately from
Theorem 2. Indeed, suppose the sequence (fn) with fn ∈ P(a1, a2, . . . ) converges uniformly
on [−1, 1]. Then it is also uniformly Cauchy on [−1, 1]. By Theorem 2 it remains uniformly
Cauchy on any compact set K ⊂ C \ {−1, 1, a1, a2, }. Theorem 1 now follows from the
well known theorem in complex analysis stating that a uniformly convergent sequence of
analytic functions on a compact set K has an analytic limit function on K.

From now on we focus on proving Theorem 2. First an extremal function for the problem
is introduced and then some nice properties of the extremal function is established in
Lemma 1.

Let z0 ∈ C \ ([−1, 1]∪{a1, a2, . . . , an}) be fixed. A simple compactness argument shows
that there exists a function 0 6= f∗ ∈ Pn(a1, a2, . . . , an) such that

(1)
|f∗(z0)|
‖f∗‖[−1,1]

= sup
0≤f∈Pn(a1,a2,... ,an)

|f(z0)|
‖f‖[−1,1]

.

Lemma 1. Suppose f∗ ∈ Pn(a1, a2, . . . , an) satisfy (1). Then the following statements
hold.
(i) The function f∗ equioscillates on [−1, 1] at least n times. That is, there are

−1 < x1 < x2 < · · · < xn < 1

such that
f∗(xj) = ±(−1)j‖f∗‖[−1,1] , j = 1, 2, . . . , n .

(ii) f∗ has only real zeros. All but at most one zeros of f∗ are in (−1, 1).

Proof. The proof of (i) can be given by a standard variational method. Assume that
statement (i) of the lemma is false. Let x1 ∈ [−1, 1] be the smallest number such that
f∗(x1) = ±‖f∗‖[−1,1]. Let x2 ∈ [x1, 1] be the smallest value for which f∗(x2) = −f∗(x1).
Inductively, let xk ∈ [xk−1, 1] be the smallest value such that f∗(xk) = −f∗(xk−1) , k =
2, 3, . . . , m , and assume that there is no xm+1 ∈ [xm, 1] such that f∗(xm+1) = −f∗(xm).
By our indirect assumption, we have m ≤ n− 1. Choose y1, y2, . . . , ym−1 so that

x1 < y1 < x2 < y2 < x3 < · · · < xm−1 < ym−1 < xm .
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We define
qm+1(x) = (x− z0)(x− z0)(x− y1)(x− y2) · · · (x− ym−1) .

Then qm+1 ∈ Pn, and for sufficiently small ε > 0 either

f∗(x) + ε
qm+1(x)

(x− a1)(x− a2) · · · (x− an)
∈ Pn(a1, a2, . . . , an)

or

f∗(x)− ε
qm+1(x)

(x− a1)(x− a2) · · · (x− an)
∈ Pn(a1, a2, . . . , an)

contradicts the extremality of f∗ Hence Part (i) is proved. To see Part (ii) we can argue
as follows. By using the Intermediate Value Theorem, Part (i) implies that all but at most
one zero of f∗ are in (−1, 1). Since f∗ ∈ Pn(a1, a2, . . . , an) can be written as f∗ = p/q
with

p ∈ p ∈ Pn and q(x) =
n∏

j=1

(x− aj) ,

we conclude that the only possibly remaining zero of f∗ is also real. �
Our next tool is the bounded Bernstein-type inequality below for non-dense rational

spaces P(a1, a2, . . . ). This is proved in [BE] (see Corollary 7.1.4 on page 323) and plays
an important role in the proof Theorem 2.

Lemma 2. Suppose {a1, a2, . . . , an} ⊂ R \ [−1, 1]. Then

|f ′(x)| ≤ 1√
1− x2


 n∑

j=1

√
a2

j − 1

|x− aj |


 ‖f‖[−1,1]

for every f ∈ Pn(a1, a2, . . . , an) and x ∈ (−1, 1).

In fact, to prove Theorem 2, we will need the following consequence of the above lemma.

Corollary 3. Suppose (aj) is a sequence with each aj ∈ R \ [−1, 1] . Suppose

C :=
∞∑

j=1

√
a2

j − 1 < ∞ .

Then
|f ′(x)| ≤ 2C

(1− x2)3/2
‖f‖[−1,1]

for every f ∈ P(a1, a2, . . . ) and x ∈ (−1, 1).

Now we are ready to prove Theorem 2.

Proof of Theorem 2. We fix n ∈ N and z0 ∈ C \ ([−1, 1] ∪ {a1, a2, . . . , an}). It is sufficient
to prove the lemma for rational functions

f ∈ S2n(a1, a2, . . . , an) := P2n(a1,−a1, a2,−a2, . . . , an,−an) .
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Without loss of generality we may assume that Re(z0) ≥ 0 and Im(z0) 6= 0. By Lemma
1 we may assume that f ∈ S2n(a1, a2, . . . , an) equioscillates on [−1, 1] at least 2n times.
That is, there exist −1 ≤ x1 < x2 < · · · < x2n ≤ 1 such that

f(xj) = ±(−1)j‖f‖[−1,1] .

Hence there are yj ∈ (xj , xj+1), j = 1, 2, . . . , 2n− 1 , α, y0 ∈ R, and σ ∈ {0, 1} such that

(2) f(x) = α
(x− y0)σ(x− y1) · · · (x− y2n−1)
(x2 − a2

1)(x2 − a2
2) · · · (x2 − a2

n)
.

Assume that σ = 1 and y0 ∈ R \ [−1, 1], the remaining cases are similar (in fact easier).
Let k be chosen so that

x1 < x2 < · · · < xk < 0 ≤ xk+1 < xk+2 < · · · < x2n .

Observe that |k − n| ≤ 2, otherwise

f(x)− f(−x) ∈ S2n(a1, a2, . . . , an)

has at least 2n + 2 zeros by counting multiplicities. By using the Mean Value Theorem
and Corollary 3 we have

(xj+1 + 1)− (xj + 1) = xj+1 − xj =
|f(xj+1)− f(xj)|

|f ′(ξj)| =
2

|f ′(ξj)|

≥ (1− ξ2
j )3/2

C
≥ (xj + 1)3/2

C
, j = 1, 2, . . . , k − 1 ,

(3)

with suitable numbers ξj ∈ (xj, xj+1). Similarly

(1− xj+1)− (1− xj) = xj+1 − xj =
|f(xj+1)− f(xj)|

|f ′(ξj)| =
2

|f ′(ξj)|

≥ (1− ξ2
j )3/2

C
≥ (1− xj+1)3/2

C
, j = k + 1, k + 2, . . . , n ,

(4)

with suitable numbers ξj ∈ (xj, xj+1). Let m ∈ N . It follows from (3) that the set

Km :=
{

j ∈ {1, 2, . . . , k − 1} :
1

(m + 1)2
< xj + 1 ≤ 1

m2

}

has at most 6C + 2 elements. Indeed, if j ∈ Km, then (3) implies

(xj+1 + 1)− (xj + 1) ≥ (xj + 1)3/2

C
≥ 1

C(m + 1)3
≥ 1

6C

(
1

m2
− 1

(m + 1)2

)
,
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and our claim follows. Therefore

(5)
k−1∑
j=1

(xj + 1) < (6C + 2)
∞∑

m=1

1
m2

≤ 12C + 4 .

Similarly, it follows from (4) that the set

Lm :=
{

j ∈ {k + 1, k + 2, . . . , n} :
1

(m + 1)2
< 1− xj ≤ 1

m2

}

has at most 6C + 2 elements. Indeed, if j ∈ Lm, then (4) implies

(1− xj)− (1− xj+1) ≥ (1− xj)3/2

C
≥ 1

C(m + 1)3
≥ 1

6C

(
1

m2
− 1

(m + 1)2

)
,

and our claim follows. Therefore

(6)
2n∑

j=k+1

(1− xj) < (6C + 2)
∞∑

m=1

1
m2

≤ 12C + 4 .

Now, combining (5), (6), and the interlacing property

−1 < x1 < y1 < x2 < y2 < · · · < x2n−1 < y2n−1 < x2n < 1 ,

we obtain

(7)
k∑

j=1

(yj + 1) ≤ 12C + 8

and

(8)
2n−1∑

j=k+1

(1− yj) ≤ 12C + 12 .

Using the condition for the non-denseness of P(a1, a2, . . . ), we have

(9)
∞∑

j=1

(a2
j − 1) ≤ C1

∞∑
j=1

√
a2

j − 1 ≤ C2 ,

where C1 and C2 are constants depending only on the sequence (aj). Observe that if
y0 ∈ R\ [−1, 1], then x−y0 = A(x+1)+B(1−x) with some constants A and B satisfying
AB > 0. Writing the factor x− y0 in (2) as the sum of the terms A(x + 1) and B(1− x),
with some constants A > 0 and B > 0 satisfying

(10) AB > 0 ,
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we obtain

(11) f(x) = f1(x) + f2(x) ,

where

(12) f1(x) = αA
(x + 1)(x− y1) · · · (x− y2n−1)
(x2 − a2

1)(x2 − a2
2) · · · (x2 − a2

n)
,

and

(13) f2(x) = αB
(1− x)(x− y1) · · · (x− y2n−1)
(x2 − a2

1)(x2 − a2
2) · · · (x2 − a2

n)
,

and AB > 0 implies

|f1(x)| ≤ |f(x)| and |f2(x)| ≤ |f(x)| , x ∈ [−1, 1] .

Assume now that ‖f‖[−1,1] ≤ 1. Then ‖f1‖[−1,1] ≤ 1 and ‖f2‖[−1,1] ≤ 1 . By E.7 on page
153 in [BE], for the factors Aα in (11) and Bα in (12), we have

(14) αA ≤ C3‖f1‖[−1,1] ≤ C3‖f‖[−1,1] ≤ C3 ,

and

(15) αB ≤ C3‖f2‖[−1,1] ≤ C3‖f‖[−1,1] ≤ C3 ,

with a constant C3 > 0 depending only on the sequence (aj) (this exercise can be eas-
ily solved by using the explicit formula for the Chebyshev “polynomial” for the space
Pn(a1, a2, . . . , an) on [−1, 1] and by observing that for every fixed k = 0, 1, . . . , n, in the
extremal problem

sup
f

|bk|
‖f‖[−1,1]

,

where the supremum is taken for all “polynomials” f ∈ Pn(a1, a2, . . . , an) of the form

f(x) = b0 +
n∑

j=1

bj

x− aj
, b0, b1, . . . , bn ∈ R ,

the extremal “polynomial” is the Chebyshev “polynomial” for the space Pn(a1, a2, . . . , an)
on [−1, 1] (in fact, we need this observation only when k = 0). This latter observation
can be easily seen by a standard zero-counting argument by noting that if one drops an
element from the system

(16)
{

1 ,
1

x− a1
,

1
x− a2

, · · · ,
1

x− an

}
,

7



then the remaining elements form a Chebyshev system on [−1, 1] (αA and αB are the
coefficients of the basis element 1 in f1 and f2, respectively if one writes them as the linear
combinations of the basis elements in (16)).

Observe that (7), (8), and |k − n| ≤ 2 imply

k∏
j=1

|z0 − yj| =
k∏

j=1

|(z0 + 1)− (yj + 1)| ≤ |z0 + 1|k+1
k∏

j=1

(
1 +

∣∣∣∣yj + 1
z0 + 1

∣∣∣∣
)

≤ |z0 + 1|n+3C4

(17)

and

2n−1∏
j=k+1

|z0 − yj | =
k∏

j=1

|(1− z0)− (1− yj)| ≤ |1− z0|n+3
2n−1∏

j=k+1

(
1 +

∣∣∣∣1− yj

1− z0

∣∣∣∣
)

≤ |1− z0|n+3C4

(18)

with some constant C4 > 0 depending only on the sequence (aj) and |1− z2
0 |. Further, it

follows from (9) that

n∏
j=1

|z2
0 − a2

j | =
n∏

j=1

|(z2
0 − 1)− (a2

j − 1)| = |z2
0 − 1|n

n∏
j=1

∣∣∣∣∣1−
a2

j − 1
z2
0 − 1

∣∣∣∣∣
≥ C5|z2

0 − 1|n

(19)

with some constant C5 > 0 depending only on (aj) and the distance between z0 and
{−1, 1,±a1,±a2, . . . }. The theorem now follows from (2) and (10)–(19). �
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