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Abstract. Let Pn(z) =
∑n

k=0 ak,nz
k ∈ C[z] be a sequence of unimodular polynomi-

als (|ak,n| = 1 for all k, n) which is ultraflat in the sense of Kahane, i.e.,

lim
n→∞

max
|z|=1

∣

∣

∣
(n+ 1)−1/2|Pn(z)| − 1

∣

∣

∣
= 0 .

For continuous functions f defined on [0, 2π], and for q ∈ (0,∞), we define

‖f‖q :=
(
∫ 2π

0

|f(t)|q dt
)1/q

.

We also define
‖f‖∞ := lim

q→∞
‖f‖q = max

t∈[0,2π]
|f(t)| .

We prove the following conjecture of Queffelec and Saffari, see (1.30) in [QS2]. If
q ∈ (0,∞) and (Pn) is an ultraflat sequence of unimodular polynomials Pn of degree
n, then for fn(t) := Re(Pn(e

it)) we have

‖fn‖q ∼
(

Γ
(

q+1
2

)

Γ
(

q
2 + 1

)√
π

)1/q

n1/2

and

‖f ′
n‖q ∼

(

Γ
(

q+1
2

)

(q + 1)Γ
(

q
2 + 1

)√
π

)1/q

n3/2 ,

where Γ denotes the usual gamma function, and the ∼ symbol means that the ratio
of the left and right hand sides converges to 1 as n → ∞. To this end we use results
from [Er1] where (as well as in [Er2], [Er3], and [Er4]) we studied the structure of
ultraflat polynomials and proved several conjectures of Queffelec and Saffari.
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2 ULTRAFLAT POLYNOMIALS

1. Introduction and the New Result

Let D be the open unit disk of the complex plane. Its boundary, the unit circle
of the complex plane, is denoted by ∂D. Let

Kn :=

{

pn : pn(z) =

n
∑

k=0

akz
k, ak ∈ C , |ak| = 1

}

.

The class Kn is often called the collection of all (complex) unimodular polynomials
of degree n. Let

Ln :=

{

pn : pn(z) =

n
∑

k=0

akz
k, ak ∈ {−1, 1}

}

.

The class Ln is often called the collection of all (real) unimodular polynomials of
degree n. By Parseval’s formula,

∫ 2π

0

|Pn(e
it)|2 dt = 2π(n+ 1)

for all Pn ∈ Kn. Therefore

min
z∈∂D

|Pn(z)| ≤
√
n+ 1 ≤ max

z∈∂D
|Pn(z)| .

An old problem (or rather an old theme) is the following.

Problem 1.1 (Littlewood’s Flatness Problem). How close can a unimodular
polynomial Pn ∈ Kn or Pn ∈ Ln come to satisfying

(1.1) |Pn(z)| =
√
n+ 1 , z ∈ ∂D?

Obviously (1.1) is impossible if n ≥ 1. So one must look for less than (1.1),
but then there are various ways of seeking such an “approximate situation”. One
way is the following. In his paper [Li1] Littlewood had suggested that, conceivably,
there might exist a sequence (Pn) of polynomials Pn ∈ Kn (possibly even Pn ∈ Ln)
such that (n + 1)−1/2|Pn(e

it)| converge to 1 uniformly in t ∈ R. We shall call
such sequences of unimodular polynomials “ultraflat”. More precisely, we give the
following definition.

Definition 1.2. Given a positive number ε, we say that a polynomial Pn ∈ Kn is
ε-flat if

(1 − ε)
√
n+ 1 ≤ |Pn(z)| ≤ (1 + ε)

√
n+ 1 , z ∈ ∂D .
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Definition 1.3. Given a sequence (εnk
) of positive numbers tending to 0, we say

that a sequence (Pnk
) of unimodular polynomials Pnk

∈ Knk
is (εnk

)-ultraflat if each
Pnk

is (εnk
)-flat. We simply say that a sequence (Pnk

) of unimodular polynomials
Pnk

∈ Knk
is ultraflat if it is (εnk

)-ultraflat with a suitable sequence (εnk
) of positive

numbers tending to 0.

The existence of an ultraflat sequence of unimodular polynomials seemed very
unlikely, in view of a 1957 conjecture of P. Erdős (Problem 22 in [Er]) asserting
that, for all Pn ∈ Kn with n ≥ 1,

(1.2) max
z∈∂D

|Pn(z)| ≥ (1 + ε)
√
n+ 1 ,

where ε > 0 is an absolute constant (independent of n). Yet, refining a method of
Körner [Kö], Kahane [Ka] proved that there exists a sequence (Pn) with Pn ∈ Kn

which is (εn)-ultraflat, where εn = O
(

n−1/17
√
logn

)

. (Kahane’s paper contained
though a slight error which was corrected in [QS2].) Thus the Erdős conjecture (1.2)
was disproved for the classes Kn. For the more restricted class Ln the analogous
Erdős conjecture is unsettled to this date. It is a common belief that the analogous
Erdős conjecture for Ln is true, and consequently there is no ultraflat sequence of
polynomials Pn ∈ Ln. An interesting result related to Kahane’s breakthrough is
given in [Be]. For an account of some of the work done till the mid 1960’s, see
Littlewood’s book [Li2] and [QS2].

Let (εn) be a sequence of positive numbers tending to 0. Let the sequence (Pn)
of unimodular polynomials Pn ∈ Kn be (εn)-ultraflat. We write

(1.3) Pn(e
it) = Rn(t)e

iαn(t) , Rn(t) = |Pn(e
it)| , t ∈ R .

It is a simple exercise to show that αn can be chosen so that it is differentiable on
R. This is going to be our understanding throughout the paper.

The structure of ultraflat sequences of unimodular polynomials is studied in
[Er1], [Er2], [Er3], and [Er4] where several conjectures of Saffari are proved. Here,
based on the results in [Er1], we prove yet another conjecture of Saffari and Queff-
elec, see (1.30) in [QS2].

For continuous functions f defined on [0, 2π], and for q ∈ (0,∞), we define

‖f‖q :=
(
∫ 2π

0

|f(t)|q dt
)1/q

.

We also define

‖f‖∞ := lim
q→∞

‖f‖q = max
t∈[0,2π]

|f(t)| .
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Theorem 1.4. Let q ∈ (0,∞). If (Pn) is an ultraflat sequence of unimodular
polynomials Pn ∈ Kn, and q ∈ (0,∞), then for fn(t) := Re(Pn(e

it)) we have

‖fn‖q ∼
(

Γ
(

q+1
2

)

Γ
(

q
2 + 1

)√
π

)1/q

n1/2

and

‖f ′
n‖q ∼

(

Γ
(

q+1
2

)

(q + 1)Γ
(

q
2 + 1

)√
π

)1/q

n3/2 ,

where Γ denotes the usual gamma function, and the ∼ symbol means that the ratio
of the left and right hand sides converges to 1 as n → ∞.

We remark that trivial modifications of the proof of Theorem 1.4 yield that
the statement of the above theorem remains true if the ultraflat sequence (Pn) of
unimodular polynomials Pn ∈ Kn is replaced by an ultraflat sequence (Pnk

) of
unimodular polynomials Pnk

∈ Knk
, 0 < n1 < n2 < . . . .

2. Proof of Theorem 1.4

To prove the theorem we need a few lemmas. The first three are from [Er1].

Lemma 2.1 (Uniform Distribution Theorem for the Angular Speed).
Suppose (Pn) is an ultraflat sequence of unimodular polynomials Pn ∈ Kn. Then,
with the notation (1.3), in the interval [0, 2π], the distribution of the normalized
angular speed α′

n(t)/n converges to the uniform distribution as n → ∞. More
precisely, we have

meas({t ∈ [0, 2π] : 0 ≤ α′
n(t) ≤ nx}) = 2πx+ γn(x)

for every x ∈ [0, 1], where limn→∞ maxx∈[0,1] |γn(x)| = 0. Also, (as it was first
observed by Saffari [Sa]), we have

(2.5) δnn ≤ α′
n(t) ≤ n− δnn

with suitable constants δn converging to 0.

Lemma 2.2 (Negligibility Theorem for Higher Derivatives). Suppose (Pn)
is an ultraflat sequence of unimodular polynomials Pn ∈ Kn. Then, with the nota-
tion (1.3), for every integer r ≥ 2, we have

max
0≤t≤2π

|α(r)
n (t)| ≤ γn,rn

r

with suitable constants γn,r > 0 converging to 0 for every fixed r = 2, 3, . . . .
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Lemma 2.3. Let q > 0. Suppose (Pn) is an ultraflat sequence of unimodular
polynomials Pn ∈ Kn. Then we have

1

2π

∫ 2π

0

|α′
n(t)|q dt =

nq

q + 1
+ δn,qn

q ,

and as a limit case,
max

0≤t≤2π
|α′

n(t)| = n+ δnn .

with suitable constants δn,q and δn converging to 0 as n → ∞ for every fixed q.

Our next lemma is a special case of Lemma 4.2 from [Er1].

Lemma 2.4. Suppose (Pn) is an ultraflat sequence of unimodular polynomials Pn ∈
Kn. Using notation (1.3), we have

max
0≤t≤2π

|R′
n(t)| = δnn

3/2 , m = 1, 2, . . . ,

with suitable constants δn converging to 0 as n → ∞.

The next lemma follows from the ultraflatness property (see Definition 1.3) and
Lemma 2.4.

Lemma 2.5. Let q ∈ (0,∞). We have

‖fn‖qq =
∫ 2π

0

|n1/2(1 + δn(t)) cos(αn(t))|q dt

and

‖f ′
n‖qq =

∫ 2π

0

|n1/2(1 + ηn(t)) sin(αn(t))α
′
n(t) + η∗n(t)n

3/2|q dt

with some numbers δn(t), ηn(t), and η∗n(t) converging to 0 uniformly on [0, 2π] as
n → ∞.

Finally we need the technical lemma below that follows by a simple calculation.

Lemma 2.6. Assume that A,B ∈ R, q > 0, and I ⊂ [0, 2π] is an interval. Then

∫

I

| cos(Bt+A)|q dt = K(q)meas(I) + δ1(A,B, q)

and
∫

I

| sin(Bt+A)|q dt = K(q)meas(I) + δ2(A,B, q) ,

where, by (6.2.1), (6.2.2), and (6.1.8) from [AS] (see pages 258 and 255), we have

2πK(q) :=

∫ 2π

0

| sin t|q dt = Γ
(

q+1
2

)

Γ
(

q
2 + 1

)√
π



6 ULTRAFLAT POLYNOMIALS

and
|δ1(A,B, q)|, |δ2(A,B, q)| ≤ πB−1 .

Proof of Theorem 1.4. By Lemma 2.5 it is sufficient to prove that

(2.1)

∫ 2π

0

| cos(αn(t))|q dt ∼ 2πK(q) :=
Γ
(

q+1
2

)

Γ
(

q
2 + 1

)√
π

and

(2.2)

∫ 2π

0

| sin(αn(t))n
−1α′

n(t)|q dt ∼
2πK(q)

q + 1
.

First we show (2.1). Let ε > 0 be fixed. Let Kn := γ
−1/4
n,2 , where γn,2 is defined

in Lemma 2.2. We divide the interval [0, 2π] into subintervals

Im := [am−1, am) :=

[

(m− 1)Kn

n
,
mKn

n

)

, m = 1, 2, . . . , N − 1 :=

⌊

2πn

Kn

⌋

,

and

IN := [aN−1, aN ) :=

[

(N − 1)Kn

n
, 2π

)

.

For the sake of brevity let

Am−1 := αn(am−1) , m = 1, 2, . . . , N ,

and
Bm−1 := α′

n(am−1) , m = 1, 2, . . . , N .

Then by Taylor’s Theorem

|αn(t)− (Am−1 +Bm−1(t− am−1)| ≤ γn,2n
2(Kn/n)

2 ≤ γn,2γ
−1/2
n,2 ≤ γ

1/2
n,2

for every t ∈ Im, where limn→∞ γ
1/2
n,2 = 0 by Lemma 2.2. Hence the functions

Gn,q(t) :=



























| cos(A0 +B0(t− a0))|q ,
| cos(A1 +B1(t− a0))|q ,

...

| cos(AN−1 +BN−1(t− aN−1))|q,

t ∈ I1 ,

t ∈ I2 ,

...

t ∈ IN ,

and
Fn,q(t) := | cos(αn(t)|q

satisfy

(2.3) lim
n→∞

sup
t∈[0,2π)

|Gn,q(t)− Fn,q(t)| = 0 .
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Therefore, in order to prove (2.1), it is sufficient to prove that

(2.4)

∫ 2π

0

Gn,q(t) dt ∼ 2πK(q) .

By using Lemma 2.5, if |Bm−1| ≥ nε, then
∣

∣

∣

∣

∫

Im

Gn,q(t) dt−K(q)meas(Im)

∣

∣

∣

∣

≤ π

nε
.

Therefore limn→∞ Kn = ∞ implies

∣

∣

∣

∣

∣

∑

m

∫

Im

Gn,q(t) dt−K(q)
∑

m

meas(Im)

∣

∣

∣

∣

∣

≤ N
π

nε
≤
(

2πn

Kn
+ 1

)

π

nε

≤ η∗n(ε) ,

(2.5)

where the summation is taken over all m = 1, 2, . . . , N for which |Bm−1| ≥ nε, and
where (η∗n(ε)) is a sequence tending to 0 as n → ∞. Now let

En,ε :=
⋃

m: |Bm−1|≤nε

Im .

If |Bm−1| ≤ nε, then we obtain by Lemma 2.2 that

|α′
n(t)| ≤ |Bm−1|+

Kn

n
max
t∈Im

|α′′
n(t)| ≤ |Bm−1|+

γ
−1/4
n,2

n
γn,2n

2 ≤ 2nε

for every t ∈ Im if n is sufficiently large. So

En,ε ⊂ {t ∈ [0, 2π] : |α′
n(t)| ≤ 2nε}

for every sufficiently large n. Hence we obtain by Lemma 2.1 that

meas(En,ε) ≤ 4πε+ η∗∗n (ε) ,

where (η∗∗n (ε)) is a sequence tending to 0 as n → ∞. Combining this with 0 ≤
Gn,q(t) ≤ 1, t ∈ [0, 2π), we obtain

(2.6)

∣

∣

∣

∣

∣

∑

m

∫

Im

Gn,q(t) dt−K(q)
∑

m

meas(Im)

∣

∣

∣

∣

∣

≤ (4πε+ η∗∗n (ε))(1 +K(q)) ,

where n is sufficiently large and the summation is taken over all m = 1, 2, . . . , N
for which |Bm−1| < nε. Since ε > 0 is arbitrary, (2.4) follows from (2.5) and (2.6).
The proof of (2.1) is now finished.

Now we prove (2.2). Let ε > 0 be fixed. Let the intervals Im and the numbers
Am and Bm, m = 1, 2, . . . , N , as in the proof of (2.1). We define

Gn,q(t) :=



























| sin(A0 +B0(t− a0))|q,
| sin(A1 +B1(t− a0))|q,

...

| sin(AN−1 +BN−1(t− aN−1))|q,

t ∈ I1 ,

t ∈ I2 ,

...

t ∈ IN
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and
Fn,q(t) := | sin(αn(t)|q .

Similarly to the corresponding argument in the proof of (2.1), we obtain (2.3). Let

G∗
n,q(t) :=



























| sin(A0 +B0(t− a0))|q |n−1B0|q,
| sin(A1 +B1(t− a0))|q |n−1B1|q,

...

| sin(AN−1 +BN−1(t− aN−1))|q |n−1BN−1|q,

t ∈ I1 ,

t ∈ I2 ,

...

t ∈ IN

and
F ∗
n,q(t) := | sin(αn(t))|q|n−1α′

n(t)|q .

We have

(2.7) G∗
n,q(t) = Gn,q(t)Hn,q(t) ,

where

Hn,q(t) :=



























|n−1B0|q,
|n−1B1|q,

...

|n−1BN−1|q,

t ∈ I1 ,

t ∈ I2 ,

...

t ∈ IN .

It follows from Lemma 2.2 that

∣

∣|n−1α′
n(t)| − |n−1Bm−1|

∣

∣ =
∣

∣|n−1α′
n(t)| − |n−1α′

n(am−1)|
∣

∣

≤ Kn

n
max
t∈Im

|n−1α′′
n(t)| ≤

γ
−1/4
n,2

n
n−1γn,2n

2 = γ
3/4
n,2

for every t ∈ Im. Since limn→∞ γ
3/4
n,2 = 0, we obtain that

(2.8) lim
n→∞

sup
t∈[0,2π)

|Hn,q(t)− |n−1α′
n(t)|q | = 0 .

Now observe that

(2.9) sup
t∈[0,2π)

| sin(αn(t)|q ≤ 1

and by Lemma 2.1 we have

(2.10) sup
t∈[0,2π)

|n−1α′
n(t)|q ≤ 2q

for all sufficiently large n. Now (2.3), (2.8), (2.9), (2.10), and (2.7) imply

lim
n→∞

sup
t∈[0,2π)

|G∗
n,q(t)− F ∗

n,q(t)| = 0 .
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Therefore, in order to prove (2.2), it is sufficient to prove that

(2.11)

∫ 2π

0

G∗
n,q(t) dt ∼

2πK(q)

q + 1
.

As a special case of (2.10), we have

|n−1Bm−1|q ≤ 2q , m = 1, 2, . . . , N ,

for all sufficiently large n. Hence, if n is sufficiently large and |Bm−1| ≥ nε, then,
with the help of Lemma 2.6, we obtain that

∣

∣

∣

∣

∫

Im

G∗
n,q(t) dt−K(q)meas(Im)|n−1Bm−1|q

∣

∣

∣

∣

≤ 2q
π

nε
.

Therefore limn→∞ Kn = ∞ implies

∣

∣

∣

∣

∣

∑

m

∫

Im

Gn,q(t) dt−K(q)
∑

m

meas(Im)|n−1Bm−1|q
∣

∣

∣

∣

∣

≤ 2qN
π

nε

≤ 2q
(

2πn

Kn
+ 1

)

π

nε

≤ η∗n,q(ε) ,

(2.12)

where the summation is taken over all m = 1, 2, . . . , N for which |Bm−1| ≥ nε, and
where (η∗n,q(ε)) is a sequence tending to 0 as n → ∞. Now let

En,ε :=
⋃

m: |Bm−1|≤nε

Im .

As in the proof of (2.1) we have

meas(En,ε) ≤ 4πε+ η∗∗n (ε) ,

where (η∗∗n (ε)) is a sequence tending to 0 as n → ∞. Combining this with (2.9)
and (2.10), and recalling the definition of G∗

n,q, we obtain
∣

∣

∣

∣

∣

∑

m

∫

Im

G∗
n,q(t) dt−K(q)

∑

m

meas(Im)|n−1Bm−1|q
∣

∣

∣

∣

∣

≤ (4πε+ η∗∗n (ε))2q(1 +K(q)) ,

(2.13)

where n is sufficiently large and the summation is taken over all m = 1, 2, . . . , N
for which |Bm−1| < nε. Since ε > 0 is arbitrary, from (2.12) and (2.13) we obtain
that

(2.14)

∫ 2π

0

G∗
n,q(t) dt ∼ K(q)

∫ 2π

0

Hn,q(t) dt

However (2.8) and Lemma 2.3 imply that

(2.15)

∫ 2π

0

Hn,q(t) dt ∼ n−q

∫ 2π

0

|α′
n(t)|q dt ∼

2π

q + 1

The statement under (2.11) now follows by combining (2.14), and (2.15). As we
have remarked before, (2.11) implies (2.2). �
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