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Abstract

For n ∈ N , L > 0, and p ≥ 1 let κp(n,L) be the largest possible
value of k for which there is a polynomial P 6≡ 0 of the form

P (x) =
n
∑

j=0

ajx
j , |a0| ≥ L

(

n
∑

j=1

|aj|p
)1/p

, aj ∈ C ,

such that (x − 1)k divides P (x). For n ∈ N, L > 0, and q ≥ 1 let
µq(n,L) be the smallest value of k for which there is a polynomial Q
of degree k with complex coefficients such that

|Q(0)| > 1

L

(

n
∑

j=1

|Q(j)|q
)1/q

.

We find the size of κp(n,L) and µq(n,L) for all n ∈ N, L > 0, and
1 ≤ p, q ≤ ∞. The result about µ∞(n,L) is due to Coppersmith and
Rivlin, but our proof is completely different and much shorter even
in that special case.
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1 Introduction.

In [B-99] and [B-13] we examined a number of problems concerning poly-

nomials with coefficients restricted in various ways. We are particularly

interested in how small such polynomials can be on the interval [0, 1]. For

example, we proved that there are absolute constants c1 > 0 and c2 > 0

such that

exp
(

−c1
√
n
)

≤ min
06≡Q∈Fn

{

max
x∈[0,1]

|Q(x)|
}

≤ exp
(

−c2
√
n
)

for every n ≥ 2, where Fn denotes the set of all polynomials of degree at

most n with coefficients from {−1, 0, 1}.
Littlewood considered minimization problems of this variety on the unit

disk. His most famous, now solved, conjecture was that the L1 norm of an

element f ∈ Fn on the unit circle grows at least as fast as c logN , where N

is the number of non-zero coefficients in f and c > 0 is an absolute constant.

When the coefficients are required to be integers, the questions have a

Diophantine nature and have been studied from a variety of points of view.

See [A-90], [B-98], [B-95], [F-80], [O-93].

One key to the analysis is a study of the related problem of giving an

upper bound for the multiplicity of the zero these restricted polynomials

can have at 1. In [B-99] and [B-13] we answer this latter question precisely

for the class of polynomials of the form

Q(x) =
n
∑

j=0

ajx
j , |aj| ≤ 1 , aj ∈ C , j = 1, 2, . . . , n ,

with fixed |a0| 6= 0.

Variants of these questions have attracted considerable study, though

rarely have precise answers been possible to give. See in particular [A-79],

[B-32], [B-87], [E-50], [Sch-33], [Sz-34]. Indeed, the classical, much stud-

ied, and presumably very difficult problem of Prouhet, Tarry, and Escott

rephrases as a question of this variety. (Precisely: what is the maximal van-

ishing at 1 of a polynomial with integer coefficients with l1 norm 2n? It is

conjectured to be n.) See [H-82], [B-94], or [B-02].

For n ∈ N, L > 0, and p ≥ 1 we define the following numbers. Let

κp(n, L) be the largest possible value of k for which there is a polynomial

Q 6≡ 0 of the form

Q(x) =

n
∑

j=0

ajx
j , |a0| ≥ L

(

n
∑

j=1

|aj|p
)1/p

, aj ∈ C ,
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such that (x − 1)k divides Q(x). For n ∈ N and L > 0 let κ∞(n, L) be the

largest possible value of k for which there is a polynomial Q 6≡ 0 of the form

Q(x) =
n
∑

j=0

ajx
j , |a0| ≥ L max

1≤j≤n
|aj | , aj ∈ C ,

such that (x−1)k divides Q(x). In [B-99] we proved that there is an absolute

constant c3 > 0 such that

min
{1

6

√

(n(1− logL)− 1 , n
}

≤ κ∞(n, L) ≤ min
{

c3
√

n(1− logL) , n
}

for every n ∈ N and L ∈ (0, 1]. However, we were far from being able to

establish the right result in the case of L ≥ 1. In [B-13] we proved the right

order of magnitude of κ∞(n, L) and κ2(n, L) in the case of L ≥ 1. Our re-

sults in [B-99] and [B-13] sharpen and generalize results of Schur [Sch-33],

Amoroso [A-90], Bombieri and Vaaler [B-87], and Hua [H-82] who gave ver-

sions of this result for polynomials with integer coefficients. Our results in

[B-99] have turned out to be related to a number of recent papers from a wide

range of research areas. See [A-02], [B-98], [B-95], [B-96], [B-97a], [B-97b],

[B-97], [B-00], [B-07], [B-08a], [B-13], [B-08b], [B-92], [B-94], [Bu-99], [C-02],

[C-13], [C-10], [D-99], [D-01], [D-13], [D-03], [E-08a], [E-08b], [E-13], [F-00],

[G-05], [K-04], [M-68], [M-03], [N-94], [O-93], [P-99], [P-13], [R-04], [R-07],

[S-99], [T-07], [T-84], for example. More results on the zeros of polynomi-

als with Littlewood-type coefficient constraints may be found in [E-02b].

Markov and Bernstein type inequalities under Erdős type coefficient con-

straints are surveyed in [E-02a].

For n ∈ N, L > 0, and q ≥ 1 we define the following numbers. Let

µq(n, L) be the smallest value of k for which there is a polynomial of degree

k with complex coefficients such that

|Q(0)| > 1

L

(

n
∑

j=1

|Q(j)|q
)1/q

.

For n ∈ N and L > 0 let µ∞(n, L) be the smallest value of k for which there

is a polynomial of degree k with complex coefficients such that

|Q(0)| > 1

L
max

j∈{1,2,...,n}
|Q(j)| .

It is a simple consequence of Hölder’s inequality (see Lemma 3.6) that

κp(n, L) ≤ µq(n, L)
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whenever n ∈ N, L > 0, 1 ≤ p, q ≤ ∞, and 1/p+ 1/q = 1.

In this paper we find the the size of κp(n, L) and µq(n, L) for all n ∈ N,

L > 0, and 1 ≤ p, q ≤ ∞. The result about µ∞(n, L) is due to Copper-

smith and Rivlin [C-92], but our proof presented in this paper is completely

different and much shorter even in that special case. Our results in [B-99]

may be viewed as finding the size of κ∞(n, L) and µ1(n, L) for all n ∈ N

and L ∈ (0, 1]. Our results in [B-13] may be viewed as finding the size of

κ∞(n, L), µ1(n, L), κ2(n, L), and µ2(n, L) for all n ∈ N and L > 0.

2 New Results.

We extend some of our main results in [B-13] to the case L ≥ 1. Our main

result is the following.

Theorem 2.1. Let p ∈ (1,∞] and q ∈ [1,∞) satisfy 1/p+ 1/q = 1. There

are absolute constants c1 > 0 and c2 > 0 such that

√
n(c1L)

−q/2 − 1 ≤ κp(n, L) ≤ µq(n, L) ≤
√
n(c2L)

−q/2 + 2

for every n ∈ N and L > 1/2, and

c3min
{

√

n(− logL), n
}

≤ κp(n, L) ≤ µq(n, L)

≤ c4min
{

√

n(− logL), n
}

+ 4

for every n ∈ N and L ∈ (0, 1/2]. Here c1 := 1/53, c2 := 40, c3 := 2/7, and

c4 := 13 are appropriate choices

Theorem 2.2. There are absolute constants c1 > 0 and c2 > 0 such that

c1
√

n(1− L)− 1 ≤ κ1(n, L) ≤ µ∞(n, L) ≤ c2
√

n(1− L) + 1

for every n ∈ N and L ∈ (1/2, 1], and

c3min
{

√

n(− logL), n
}

≤ κ1(n, L) ≤ µ∞(n, L)

≤ c4min
{

√

n(− logL), n
}

+ 4

for every n ∈ N and L ∈ (0, 1/2]. Note that κ1(n, L) = µ∞(n, L) = 0 for

every n ∈ N and L > 1. Here c1 := 1/5, c2 := 1, c3 := 2/7, and c4 := 13

are appropriate choices.
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3 Lemmas.

In this section we list our lemmas needed in the proofs of Theorems 2.1

and 2.2. These lemmas are proved in Section 4. Let Pn be the set of all

polynomials of degree at most n with real coefficients. Let Pc
n be the set of

all polynomials of degree at most n with complex coefficients.

Lemma 3.1. Let p ∈ (1,∞). For any 1 ≤ M there are polynomials Pn of

the form

Pn(x) =

n
∑

j=0

aj,nx
j , aj,n ∈ R , a0,n ≥ 3M

π2
+ o(M) ,

(

n
∑

j=1

|aj,n|p
)1/p

≤ 16M1/p ,

such that Pn has at least ⌊
√

n/M⌋ zeros at 1.

Lemma 3.2. Let p, q ∈ (1,∞) satisfy 1/p + 1/q = 1. For any L ≥ 1/48

there are polynomials Pn of the form

Pn(x) =
n
∑

j=0

aj,nx
j , aj,n ∈ R , a0,n ≥ L+ o(L) ,

n
∑

j=1

|aj,n|p ≤ 1 ,

such that Pn has at least ⌊√n(cL)−q/2⌋ zeros at 1 with c :=
3

16π2
.

Lemma 3.3. Let p ∈ [1,∞). For any L ∈ (0, 1/17) there are polynomials

Pn of the form

Pn(x) =
n
∑

j=0

aj,nx
j , aj,n ∈ R , a0,n = L ,

n
∑

j=1

|aj,n|p ≤ 1 ,

such that Pn has at least
2

7
min{

√

n(1− logL), n} zeros at 1.

Lemma 3.4. For any L ∈ (0, 1) there are polynomials Pn 6≡ 0 of the form

Pn(x) =

n
∑

j=0

aj,nx
j , aj,n ∈ R , a0,n ≥ L

n
∑

j=1

|aj,n| ,

such that Pn has at least
1

5

√

(n− 1)(1− L) zeros at 1.

The observation below is well known, easy to prove, and recorded in

several papers. See [B-99], for example.
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Lemma 3.5. Let P 6≡ 0 be a polynomial of the form P (x) =
∑n

j=0 ajx
j.

Then (x− 1)k divides P if and only if
∑n

j=0 ajQ(j) = 0 for all polynomials

Q ∈ Pc
k−1.

Our next lemma is a simple consequence of Hölder’s inequality.

Lemma 3.6. Let 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1. Then for every n ∈ N

and L > 0, we have

κp(n, L) ≤ µq(n, L) .

The next lemma is stated as Lemma 3.4 in [K-03], where a proof of it is

also presented.

Lemma 3.7. Given A > 0 and M > 0, there exists a polynomial G such

that F = G2 ∈ Pm with

m <
√
π
√
A

4
√
M + 2

such that F (0) = M and

|F (x)| ≤ min{M,x−2} , x ∈ (0, A] .

We also need Lemma 5.7 from [B-99] which may be stated as follows.

Lemma 3.8. Let n and R be positive integers with 1 ≤ R ≤ √
n. Then

there exists a polynomial F ∈ Pm with

m ≤ 4
√
n+ 9

7
R
√
n+R + 4 ≤ 44

7
R
√
n+ 4

such that

F (1) = F (2) = · · · = F (R2) = 0

and

|F (0)| > exp(R2)
(

|F (R2 + 1)|+ |F (R2 + 2)|+ · · ·+ |F (n)|
)

≥ exp(R2)

(

n
∑

j=1

|F (j)|2
)1/2

.

Lemmas 3.6 and 3.7 imply the following results needed in the proof of

Theorems 2.1 and 2.2.
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Lemma 3.9. Let q ∈ [1,∞). For every n ∈ N, q ∈ [1,∞), and K > 0,

there are polynomials F ∈ Pm satisfying

|F (0)| > K

(

n
∑

j=1

|F (j)|q
)1/q

and

m ≤
{√

n(40K)q/2 + 2 , 0 < K < 2 ,

13min
{√

n logK, n
}

+ 4 , K ≥ 2 .

Lemma 3.10. For every n ∈ N and K > 1, there are polynomials F ∈ Pm

satisfying

|F (0)| > K max
j∈{1,2,...,n}

|F (j)|

and

m ≤
{√

n(K − 1)/2 + 1 , 1 < K < 2 ,

13min
{√

n logK, n
}

+ 4 , K ≥ 2 .

4 Proofs of the Lemmas.

Proof of Lemma 3.1.

Modifying the construction on page 138 of [B-95] for x ∈ (0,∞) we define

H1(x) := 1 and

Hm(x) :=
(−1)m+12(m!)2

2πi

∫

Γ

xt dt

(t− 2)
∏m

j=0 (t− j2)
, m = 2, 3, . . . ,

where the simple closed contour Γ surrounds the zeros of the denominator

of the integrand. Observe that we have added the factor t − 2 to the de-

nominator and the factor (−1)m+12 to achieve our goals. (It is left to the

reader to see what role this modification plays in our proof.) Then Hm is a

polynomial of degree m2 with a zero at 1 with multiplicity at least m + 1.

(This can be seen easily by repeated differentiation and then evaluation of

the above contour integral by expanding the contour to infinity.)

Also, by the residue theorem,

(4.1) Hm(x) = 1 + dmx
2 +

m
∑

k=1

ck,mx
k2 , m = 2, 3, . . . ,

where

ck,m =
(−1)m+12(m!)2

(k2 − 2)
∏m

j=0,j 6=k (k
2 − j2)

=
4

k2 − 2

(−1)k+1(m!)2

(m− k)!(m+ k)!
,
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and

dm =
(−1)m+12(m!)2
∏m

j=0 (2− j2)
.

It follows that each ck,m is real and

(4.2) |ck,m| ≤
4

|k2 − 2| , k = 1, 2, . . . , m ,

and a simple calculation shows that

(4.3) |dm| ≤ 8 , m = 2, 3, . . . .

(No effort has been made to optimize the bound in (4.3).) Let SM be

the collection of all odd square free integers in [1,M ]. Let m := ⌊
√

n/M⌋.
If m = 0 then there is nothing to prove. So we may assume that m ≥ 1. It

is well known that

|SM | ≥ 3M

π2
+ o(M) ,

where |A| denotes the number of elements in a finite set A. This follows

from the fact that if S∗
M is the collection of all square free integers in [1,M ],

then

|S∗
M | = 6M

π2
+ o(M) ,

see pp. 267-268 in [H-38], for example, by observing that the number of odd

square free integer in [1,M ] is not less than the number of even square free

integers in [1,M ] (if a is an even square free integer then a/2 is an odd

square free integer). We define

Pn(x) :=
∑

j∈SM

Hm(x
j) .

Then Pn is of the form

Pn(x) =
n
∑

j=0

aj,nx
j , aj,n ∈ R , j = 0, 1, . . . , n .

We have

a0,n = |S∗
M | ≥ 3M

π2
+ o(M) .

First assume that m = 1. Then

n
∑

j=1

|aj,n|p = 2|SM | ≤ 2M ,
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and as Pn has 1 zero at 1, the lemma follows. Now assume that m ≥ 2. We

have ju 6= lv whenever j, l ∈ SM , j 6= l, and u, v ∈ {12, 22, . . . , m2} ∪ {2}.
Combining this with (4.1), (4.2), and (4.3), we obtain

n
∑

j=1

|aj,n|p ≤ |SM |
(

8p +

m
∑

k=1

(

4

|k2 − 2|

)p)

≤ |SM |
(

8p +

m
∑

k=1

4p

|k2 − 2|

)

=M(8p + 8p) ≤ 16pM .

Observe that each term in Pn has a zero at 1 with multiplicity at least

m+ 1 > ⌊
√

n/M⌋ zeros at 1, and hence so does Pn.

Proof of Lemma 3.2.

The statement follows from Lemma 3.1 by choosing 1 ≤ M so that

L :=
3

16π2
M1−1/p =

3

16π2
M1/q .

This can be done when
3

16π2
≤ L.

Proof of Lemma 3.3

Let L ∈ (0, 1/17]. We define

k := min

{⌊− logL

log 17

⌋

, n

}

and m := ⌊
√

n/k⌋ .

Observe that k ≥ 1 andm ≥ 1 hold. Let Pn := LHk
m ∈ Pn, where Hm ∈ Pm2

defined by (4.1). Then

Pn(x) =

n
∑

j=0

aj,nx
j , aj,n ∈ R , j = 0, 1, . . . , n ,

has at least

km ≥ k
1

2

√

n/k =
1

2

√
nk =

1

2
√
log 17

min
{

√

n(− logL), n
}

zeros at 1, where 2
√
log 17 < 7/2. Clearly, a0,n = Pn(0) = L, and using the

notation in (4.1), we can deduce that

n
∑

j=1

|aj,n|p ≤Lp

(

n
∑

j=1

|aj,n|
)p

≤ Lp

(

1 + |dm|+
m
∑

k=1

|ck,m|
)kp

≤Lp(1 + 8 + 8)kp = Lp 17kp ≤ LpL−p = 1 ,

if m ≥ 2, and

n
∑

j=1

|aj,n|p ≤ Lp

(

n
∑

j=1

|aj,n|
)p

≤ Lp2kp ≤ LpL−p = 1 ,
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if m = 1.

Proof of Lemma 3.4

Let

r :=

⌊

12
1 + L

1− L

⌋

+ 1 and m :=

⌊

√

n− 1

r

⌋

.

When m ≤ 1 we have ⌊(1/9)
√

n(1− L)⌋ = 0, so there is nothing to prove.

Now assume that m ≥ 2. Let Pn ∈ Pn be defined by Pn(x) := Hm(x
r),

where Hm ∈ Pm2 defined by (4.1). Let Qn ∈ Pn be defined by

Qn(x) = −
∫ 1

0

Pn(t) dt+

∫ x

0

Pn(t) dt .

Then, using the notation in (4.1), we have

Qn(x) = −1 − dm
2r + 1

−
m
∑

k=1

ck,m
rk2 + 1

+ x+
dmx

2r+1

2r + 1
+

m
∑

k=1

ck,mx
rk2+1

rk2 + 1
.

Writing

Qn(x) =

n
∑

j=0

aj,nx
j , aj,n ∈ R , j = 0, 1, . . . , n ,

and recalling (4.2) and (4.3), we have

|a0,n| ≥ 1− 8

2r + 1
−

m
∑

k=1

4

|k2 − 4|(rk2 + 1)
≥ 1− 8

2r + 1
− 8

r
> 1− 12

r
,

and
n
∑

j=1

|aj,n| ≤ 1 +
8

2r + 1
+

m
∑

k=1

4

(k2 − 2)(rk2 + 1)
< 1 +

12

r
.

Combining the previous two inequalities, we obtain

|a0,n|
∑n

j=1 |aj,n|
>

1− 12/r

1 + 12/r
≥ 1− (1− L)/(1 + L)

1 + (1− L)/(1 + L)
= L .

Also Qn has at least m+ 1 ≥ ⌊
√

(n− 1)/r⌋+ 1 ≥ 1

5

√

(n− 1)(1− L) zeros

at 1.

Proof of Lemma 3.6.

We assume that p, q ∈ (1,∞), the result in the cases p = 1, q = ∞ and

p = ∞, q = 1 can be proved similarly with straightforward modification

of the proof. Let m := µq(n, L). Let Q be a polynomial of degree m with

complex coefficients such that

|Q(0)| > 1

L

(

n
∑

j=1

|Q(j)|q
)1/q

.



Coppersmith-Rivlin type inequalities and the order of vanishing 11

Now let P be a polynomial of the form

P (x) =
n
∑

j=0

ajx
j , |a0| ≥ L

(

n
∑

j=1

|aj |p
)1/p

, aj ∈ C .

It follows from Hölder’s inequality that

∣

∣

∣

∣

∣

n
∑

j=1

ajQ(j)

∣

∣

∣

∣

∣

≤
(

n
∑

j=1

|aj|p
)1/p( n

∑

j=1

|Q(j)|q
)1/q

<
|a0|
L

L|Q(0)| = |a0Q(0)| .

Then
∑n

j=0 ajQ(j) 6= 0, and hence Lemma 3.5 implies that (x− 1)m+1 does

not divide P . We conclude that κp(n, L) ≤ m = µq(n, L).

Proof of Lemma 3.9.

Note that µq(n,K) ≤ n for all n ∈ N and L > 0, as it is shown by H ∈ Pn

defined by H(x) :=
∏n

j=1 (x− j).

Case 1: 0 < K < n−1/q. The choice F ≡ 1 gives the lemma.

Case 2: n−1/q ≤ K < 2. Let F be the polynomial given in Lemma 3.7 with

A := n and M := (4K)2q. Then

n
∑

j=1

|F (j)|q ≤
∑

j≤M−1/2

M q +
∑

j>M1/2

1

j2q
< M q−1/2 +

1

2q − 1
⌊M−1/2⌋−2q+1

≤ (1 + 22q−1)M q−1/2 ,

so
(

n
∑

j=1

|F (j)|q
)1/q

< 4M1−1/(2q) = K−1F (0) ,

and the degree m of F satisfies

m < π
√
n

4
√
M + 2 < π

√
n(4K)q/2 + 2 ≤

√
n(40K)q/2 + 2 .

Case 3: 2 ≤ K ≤ exp(n − 2
√
n). Let R := ⌊

√
logK⌋ + 1, and let F be the

polynomial given in Lemma 3.7 with this R. Then

|F (0)| > K

n
∑

j=1

|F (j)| ≥ K

(

n
∑

j=1

|F (j)|q
)1/q

,

and the degree m of F satisfies

m ≤ 44
7
R
√
n + 4 ≤ 13

√
n logK + 4 .
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Case 4: K > exp(n − 2
√
n), n ≥ 9. Then logK > n − 2

√
n ≥ n/3 for

all n ≥ 9. Hence the polynomial F ∈ Pn defined by F (x) :=
∏n

j=1 (x− j)

shows that

µq(n,K) ≤ n ≤
√
3min

{

√

n logK, n
}

.

Case 5: K ≥ 2 and n < 9. Now the polynomial F ∈ Pn defined by F (x) :=
∏n

j=1 (x− j) shows

µq(n,K) ≤ n ≤ 4min
{

√

n logK, n
}

.

Proof of Lemma 3.10.

First let 1 < K < 2. Let m = ⌊
√

n(K − 1)/2⌋+1. Let Tm be the Chebyshev

polynomial of degree m defined by

Tm(cos t) = cos(mt) , t ∈ R .

It is well known that |T ′
m(1)| = m2 and T ′

m(x) is increasing on [1,∞), hence

Tm(1 + x) ≥ 1 +m2x for all x > 0. Now we define F ∈ Pm by

F (x) := Tm

( −2x

n− 1
+

n + 1

n− 1

)

.

Then |F (x)| ≤ 1 for all x ∈ [1, n], and

F (0) ≥ Tm

(

1 +
2

n− 1

)

> 1 +
m2

n− 1
> 1 +

m2

n
≥ K ,

which finishes the proof in the case of 1 < K < 2. Now let k ≥ 2. Then the

polynomial F ∈ Pm chosen for q = 1, n ∈ N, and K ≥ 2 by Lemma 3.9

gives that

|F (0)| > K

(

n
∑

j=1

|F (j)|q
)1/q

≥ K max
j∈{1,2,...,n}

|F (j)| ,

with

m ≤ 13min
{

√

n logK, n
}

+ 4 .

5 Proofs of the Theorems.

Proof of Theorem 2.1.

Without loss of generality we may assume that p ∈ (1,∞), as the case
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p = ∞ follows by a simple limiting argument (or we may as well refer to

the main result in [B-13]). By Lemma 3.6 we have

κp(n, L) ≤ µq(n, L)

for every n ∈ N and L > 0. The lower bounds for κp(n, L) follows from

Lemmas 3.2 and 3.3. The upper bounds for µq(n, L) follow from Lemma 3.9

with K = L−1.

Proof of Theorem 2.2.

By Lemma 3.6 we have

κ1(n, L) ≤ µ∞(n, L)

for every n ∈ N and L > 0. The lower bounds for κ1(n, L) follow from

Lemmas 3.3 and 3.4. The upper bounds for µ∞(n, L) follow from Lemma

3.10 with K = L−1.

6 Remarks and Problems.

A question that we have not really considered in this paper is the follow-

ing. Are here are examples of n, L, and p for which the values of κp(n, L)

are significantly smaller if the coefficients are required to be rational (per-

haps together with other restrictions). The same question may be raised

about µq(n, L). As the conditions on the coefficients of the polynomials in

Theorems 2.1 and 2.2 are homogeneous, assuming rational coefficients and

integer coefficients lead to the same results. Three special classes of interest

are

Fn :=

{

Q : Q(z) =

n
∑

j=0

ajz
j , aj ∈ {−1, 0, 1}

}

,

Ln :=

{

Q : Q(z) =

n
∑

j=0

ajz
j , aj ∈ {−1, 1}

}

,

and

Kn :=

{

Q : Q(z) =

n
∑

j=0

ajz
j , aj ∈ C, |aj| = 1

}

.

The following three problems arise naturally.

Problem 6.1. How many zeros can a polynomial 0 6≡ Q ∈ Fn have at 1?

Problem 6.2. How many zeros can a polynomial Q ∈ Ln have at 1?
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Problem 6.3. How many zeros can a polynomial Q ∈ Kn have at 1?

The case p = ∞ and L = 1 in our Theorem 2.1 gives that every 0 6≡
Q ∈ Fn, every Q ∈ Ln, and every Q ∈ Kn can have at most cn1/2 zeros

at 1, where c > 0 is an absolute constant. However, one may expect better

results by utilizing the additional pieces of information on their coefficients.

It was observed in [B-99] that for every integer n ≥ 2 there is a Q ∈ Fn

having at least c(n/ logn)1/2 zeros at 1 with an absolute constant c > 0.

This can be shown by a simple pigeon hole argument. However, as far as we

know, closing the gap between cn1/2 and c(n/ logn)1/2 in Problem 6.1 is an

open and most likely a very difficult problem.

As far as Problem 6.2 is concerned, Boyd [B-97] showed that for n ≥ 3

every Q ∈ Ln has at most

(6.1)
c(log n)2

log log n

zeros at 1. This is the best known upper bound in Problem 6.2 even today.

Boyd’s proof is very clever and, up to an application of the Prime Number

Theorem, completely elementary. It is reasonable to conjecture that there

is an absolute constant c > 0 such that every Q ∈ Ln, n ≥ 2, has at most

c logn zeros at 1 for every . It is easy to see that for every integer n ≥ 2

there are Qn ∈ Ln with at least c logn zeros at 1 with an absolute constant

c > 0.

As far as Problem 6.3 is concerned, one may suspect that every every

Q ∈ Kn, n ≥ 2, has at most c logn zeros at 1. However, just to see if Boyd’s

bound (6.1) holds for every Q ∈ Kn seems quite challenging and beyond

reach at the moment.
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[B-97a] P. Borwein and T. Erdélyi On the zeros of polynomials with re-

stricted coefficients, Illinois J. Math. 41 (1997), 667–675.
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Müntz-Legendre polynomials, Trans. Amer. Math. Soc. 342 (1992),

523–542.

[B-94] P. Borwein and C. Ingalls The Prouhet-Tarry-Escott problem revis-

ited, Ens. Math. 40 (1994), 3–27.

[B-00] P. Borwein and M.J. Mossinghoff Polynomials with height 1 and pre-

scribed vanishing at 1, Experiment. Math. 9 (2000), 425-433.

[B-97] D.W. Boyd On a problem of Byrnes concerning polynomials with

restricted coefficients, Math. Comp. 66 (1997), 1697–1703.

[Bu-99] H. Buhrman, R. Cleve, R. de Wolf, and C. Zalka Bounds for small-

error and zero-error quantum algorithms 40th Annual Symposium on

Foundations of Computer Science, New York, 1999, 358–368, IEEE

Computer Soc., Los Alamitos, CA.

[C-02] P.G. Casazza and N.J. Kalton Roots of complex polynomials and

Weyl-Heisenberg frame sets, Proc. Amer. Math. Soc. 130 (2002) no.

8, 2313–2318.

[C-13] J.M. Cooper and A.M. Dutle Greedy Galois games, Amer. Math.

Monthly 120 (2013) no. 5, 441451.

[C-92] D. Coppersmith and T.J. Rivlin The growth of polynomials bounded

at equally spaced points SIAM J. Math. Anal. 23 (1992) no. 4, 970–983.

[C-10] E. Croot and D. Hart h-fold sums from a set with few products, SIAM

J. Discrete Math. 24 (2010) no. 2, 505–519.

[D-99] A. Dubickas On the order of vanishing at 1 of a polynomial, Lithua-

nian Math. J. 39 (1999), 365–370.

[D-01] A. Dubickas Three problems of polynomials of small measure, Acta

Arith. 98 (2001), 279–292.

[D-13] A. Dubickas Polynomials with multiple roots at 1, Int. J. Number

Theory 10 (2014) no. 2, 391–400.

[D-03] M. Dudik and L.J. Schulman Reconstruction from subsequences,

Journal of Combinatorial Theory, Series A 103 (2003) no. 2, 337-348.



Coppersmith-Rivlin type inequalities and the order of vanishing 17
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