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Abstract. We study the classes

En :=







f : f(t) =

n
∑

j=1

aje
λj t , aj , λj ∈ C







,

E+
n :=







f : f(t) =

n
∑

j=1

aje
λjt , aj , λj ∈ C , Re(λj) ≥ 0







,

and

Tn :=







f : f(t) =

n
∑

j=1

aje
iλjt , aj ∈ C, λ1 < λ2 < · · · < λn







.

A highlight of this paper is the asymptotically sharp inequality

|f(0)| ≤ (1 + εn) 3n ‖f(t)e−9nt/2‖L2[0,1], f ∈ Tn ,

where εn converges to 0 rapidly as n tends to ∞. The inequality

sup
0 6≡f∈Tn

|f(0)|

‖f‖L2[0,1]

≥ n

is also observed. Our results improve an old result of G. Halász and a recent result of G. Kós.

We prove several other essentially sharp related results in this paper.

1. Introduction and Notation

The well known results of Nikolskii assert that the essentially sharp inequality

‖P‖Lq[−1,1] ≤ c(p, q)n2/p−2/q‖P‖Lp[−1,1]
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holds for all algebraic polynomials P of degree at most n with complex coefficients and for
all 0 < p ≤ q ≤ ∞, while the essentially sharp inequality

‖Q‖Lq[−π,π] ≤ c(p, q)n1/p−1/q‖Q‖Lp[−π,π]

holds for all trigonometric polynomials Q of degree at most n with complex coefficients
and for all 0 < p ≤ q ≤ ∞. The subject started with two remarkable papers, [25] and [29].
There are quite a few related papers in the literature, and several books discuss inequalities
of this variety with elegant proofs; see [4] and [13], for example. In this paper we focus on
the classes

En :=







f : f(t) =
n
∑

j=1

aje
λjt , aj, λj ∈ C







,

E+
n :=







f : f(t) =

n
∑

j=1

aje
λjt , aj , λj ∈ C , Re(λj) ≥ 0







,

E−
n :=







f : f(t) =

n
∑

j=1

aje
λjt , aj, λj ∈ C , Re(λj) ≤ 0







,

and

Tn :=







f : f(t) =
n
∑

j=1

aje
iλjt , aj ∈ C , λ1 < λ2 < · · · < λn







.

These classes were studied in several publications; see [21], [23], [24], and [32], for example.
For the sake of brevity let

‖f‖A := sup
t∈A

|f(t)|

for a complex-valued function f defined on a set A ⊂ R. Section 19.4 of Turán’s book [32]
refers to the following result of G. Halász:

|f(0)| ≤ cn5‖f‖[0,1] , f ∈ E+
n ,

where c > 0 is an absolute constant. This was improved recently by G. Kós [21] to

(1.1) |f(0)| ≤ 10
5n

5n− 1
n2‖f‖L1[0,1] , f ∈ E+

n ,

where cn2 is the best possible size of the factor in this inequality. He also proved that

(1.2) |f(0)| ≤ 2n‖f‖L2[0,1] , f ∈ E+
n ,

where cn is the best possible size of the factor in this inequality. The technique used in
[21] is based on integrating discrete inequalities similar to Turán’s first and second main
theorems in the theory of power sums. This technique was also used by Tijdeman as it was
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demonstrated, for example in Section 27 of Turán’s book [32]. This answers a question of
S. Denisov asked from me in e-mail communications. I was not aware of the above results
when I started to write this paper. In this paper we recapture the above inequalities with
better constants for all f ∈ Tn. Namely we prove that

(1.3) |f(0)| ≤ cn2‖f‖L1[0,1] , f ∈ Tn ,

with c = 2 + log 4 + εn = 3.3862 . . . and

(1.4) |f(0)| ≤ cn‖f‖L2[0,1] , f ∈ Tn ,

with c = (2 + log 4 + εn)
1/2 = 1.8401 . . . , where εn converges to 0 rapidly as n tends to

∞. S. Denisov [12] has just proved that the constant c = (2 + log 4 + εn)
1/2 = 1.8401 . . .

can be further improved to c = π/2 = 1.5707 . . . in (1.4). Denisov’s approach also uses a
Halász-like construction first, which may be found in [20] and it also appears as Lemma
10.8 in [29], but after that it employs a duality argument and an old result of Lachance,
Saff, and Varga [22], which is not used by Kós. We note that Denisov’s improvement of
(1.4) can also be seen for all f ∈ E+

n by modifying Kós’s approach. Indeed, it is proved in
[22] that

σk := min
{

‖P (eit)‖[0,2π] : P (0) = 1, P (1) = 0, P ∈ Pc
k

}

=

(

sec
π

2(k + 1)

)k+1

,

where Pc
k denotes the set of all algebraic polynomials of degree at most k with complex

coefficients. Hence there are polynomials Hk ∈ Pc
k such that Hk(0) = 1 and

‖Hk(e
it)‖[0,2π] ≤

(

sec
π

2(k + 1)

)k+1

= exp

(

π2

8k
+O

(

1

k2

))

.

Using the above Hk ∈ Pc
k instead of the Hk ∈ Pc

k in Kós’s proof satisfying only

‖Hk(e
it)‖[0,2π] ≤ exp

(

2

k

)

,

we get Denisov’s improvement of (1.4) can be extended to all f ∈ E+
n , that is,

(1.5) |f(0)| ≤
πn

2
‖f‖L2[0,1] , f ∈ E+

n .

In Section 2.2 the infinite-finite range inequality

∫ ∞

0

|f(t)|2e−t dt ≤ (1 + εn)
2

∫ 9n

0

|f(t)|2e−t dt

is stated for every f ∈ E−
n , in particular, for every f ∈ Tn, where (1+εn)

2 := 1+8190 e−n/10.
As a consequence we prove that

|f(0)| ≤ (1 + εn) 3n ‖f(t)e−9nt/2‖L2[0,1] , f ∈ Tn ,
3



where εn is the same as before, and for every λ1 < λ2 < · · · < λn there is an f ∈ Tn of the
form

(1.6) f(t) =
n
∑

j=1

aje
iλjt , aj ∈ C ,

such that
|f(0)| > 3n ‖f(t)e−9nt/2‖L2[0,1] .

Other Nikolskii-type inequalities comparing the Lp[0, 1] and Lq[0, 1] norms of exponential
sums f ∈ Tn are also established in Section 2.1 We use quite different techniques based
on the knowledge of Müntz-Legendre orthonormal polynomials studied in [9] and Section
3.4 of [4]. We obtain interesting Markov-type inequalities as well for the derivatives of
exponential sums f ∈ Tn, but such a Markov-type inequality cannot depend only on n, it
depends on the exponents λ1 < λ2 < · · · < λn. We also examine how far our estimates are
from being sharp, and it turns out that our main results proved in this paper are essentially
sharp. Most importantly, the inequality

sup
0 6≡f∈Tn

|f(0)|

‖f‖L2[0,1]
≥ n .

is also observed in Section 2.1. The inequality

|f(0)| ≤ n‖f‖L2[0,1]

for every f ∈ E+
n of the form

(1.7) f(t) =

n
∑

j=1

aje
λjt , aj ∈ R , 0 ≤ λ1 < λ2 < · · · < λn ,

is stated in Section 2.3. This inequality is sharp. We suspect that the above inequality
holds for all f ∈ Tn or perhaps for all f ∈ E+

n at least with n replaced by (1+ εn)n, where
εn tends to 0 as n tends to ∞. Markov-Nikolskii-type inequalities for Tn are established
in Section 2.4. Markov-Nikolskii-type inequalities for f ∈ En with nonnegative exponents
are formulated in Section 2.5. We claim that

|f ′(0)| ≤ (1 + εn) 3
−1/2 n3‖f‖L2[0,1]

for every f ∈ E+
n of the form (1.7), where the quantity εn (determined exactly in the proof)

tends to 0 an n tends to ∞. This inequality is sharp. Section 2.6 offers an essentially sharp
pointwise Nikolskii-type inequality for En, namely we claim that

(

(n− 2) log 2

4min{y − a, b− y}

)1/2

≤ sup
0 6≡f∈En

|f(y)|

‖f‖L2[a,b]
≤

(

2n

min{y − a, b− y}

)1/2
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for every y ∈ (a, b). In Section 2.7 we offer the Bernstein-type inequality

|f ′(0)| ≤ 2e(λ+ n+ 1) ‖f‖[−1,1]

for every f ∈ Tn of the form (1.6), where

(1.8) λ := max
1≤j≤n

|λj| , λ1 < λ2 < · · · < λn .

This inequality is sharp up to the factor 2e. Namely, for every real number λ > 0 and
integer n ≥ 1 there is an f ∈ Tn of the form (1.6) with (1.8) such that

|f ′(0)| ≥
1

4
(λ+ n− 3) ‖f‖[−1,1] .

In Section 2.8 the Markov-type inequality

‖f ′‖[0,1] ≤ (1 + εn)

(

108n5 +
n
∑

k=1

λ2
k

)1/2

‖f‖[0,1]

for every f ∈ Tn of the form (1.6) is established, where the quantity εn ( determined
exactly in the proof) tends to 0 an n tends to ∞. We record an observation showing how
far the above Markov inequality is from being sharp. Markov-type inequalities for E−

n and
Tn in L2[0,∞) with the Laguerre weight are established in Section 2.9. Our Theorem 2.9.1
extends Lubinsky’s Theorem 3.2 in [23] from the case of exponential sums with purely
imaginary exponents to the case of exponential sums with complex exponents. Our only
result in Section 2.10 is a version of Theorem 2.9.1, a Markov-type inequality for E−

n in
L2[0,∞) without a weight. We prove our new results in Section 4. Lemmas needed in the
proofs of our new results are stated and proved in Section 3. Combining Turán’s power
sum method with results in [10], [11], and [18], we may be able to prove other interesting
results in the future. We close the paper with an Appendix listing results closely related
to our new results in this paper. Theorems 5.1–5.6 have been proved by subtle Descartes
system methods which can be employed only in the case of exponential sums with real
exponents but not in the case of complex exponents. The reader may find it useful to
compare the results in Section 5 with the new results of the paper.

Throughout the paper Pc
n denotes the set of all algebraic polynomials of degree at most

n with complex coefficients, and Pn denotes the set of all algebraic polynomials of degree
n with real coefficients. Observe that

t = lim
ε→0+

eiεt − 1

iε

and the remark below follows immediately.
Remark 1.1. For every P ∈ Pc

n−1 there are fk ∈ Tn of the form

fk(t) = P

(

eiεkt − 1

iεk

)

, εk > 0 , lim
k→∞

εk = 0 ,

such that

lim
k→∞

‖(fk(t)− P (t))e−t‖[0,∞) = lim
k→∞

‖(f ′
k(t)− P ′(t))e−t‖[0,∞) = 0 .
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2. New Results

2.1. Nikolskii-type inequalities for Tn

In Section 5 we review certain Nikolskii-type and Markov-Nikolskii type inequalities
known for exponential sums with only real exponents λj ; see Theorems 5.1, 5.2, 5.3, and
5.4. What happens to Nikolskii-type inequalities if we consider exponential sums with
purely imaginary, or more generally, arbitrary complex exponents? Answering a question
of Sergey Denisov (e-mail communications) in this section first we establish a new Nikolskii-
type inequality for exponential sums in Tn. Observe that while our constant (8 + εn) in
Theorem 2.1.1 is not as good as π/2 or even 2, there is a rapidly decreasing weight function
w(t) = e−nt in Theorem 2.1.1 pushing the L2[0, 1] norm down at the right-hand side.

Theorem 2.1.1. We have

|f(0)| ≤ (8 + εn)
1/2 n ‖f(t)e−nt‖L2[0,1], f ∈ Tn ,

where (8 + εn)
1/2 := 81/2(1 + 2e−2n)1/2, and for every λ1 < λ2 < · · · < λn there is an

f ∈ Tn of the form (1.6) such that

|f(0)| > 81/2 n ‖f(t)e−4nt‖L2[0,1] .

Our next theorem recaptures Kós’s inequality (1.1) with a constant better than c = 2
but not as good as c = π/2. The constant specified in our theorem below seems to be the
limit of what our essentially different method based on the explicit form of Müntz-Legendre
orthonormal polynomials gives.

Theorem 2.1.2. Let γ0 := 2 + log 4 < γ ≤ 4. We have

|f(0)| ≤ (γ + εn)
1/2 n ‖f‖L2[0,1], f ∈ Tn ,

where

(γ + εn)
1/2 = γ1/2(1 + δ−2e−δγn)1/2 , δ :=

γ − γ0
8

.

Observe that if f ∈ Tn and g(t) = f(−t), then g ∈ Tn. Hence the extension of Theorem
2.1.2 formulated by our next couple of theorems follows easily.

Theorem 2.1.3. We have

‖f‖[0,1] ≤
πn

2
‖f‖L2[0,1] , f ∈ Tn .

Theorem 2.1.4. We have

‖f‖[0,1] ≤
(πn

2

)2/q

‖f‖Lq[0,1] , f ∈ Tn , q ∈ (0, 2] .
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Theorem 2.1.5. We have

‖f‖Lp[0,1] ≤
(πn

2

)2/q−2/p

‖f‖Lq[0,1] , f ∈ Tn , 0 < q < p ≤ ∞ , q ≤ 2 .

Note that the case q = 1 of Theorem 2.1.4 improves Kós’s inequality (1.1) to

‖f‖[0,1] ≤
π2n2

4
‖f‖L1[0,1] , f ∈ Tn .

Theorem 2.1.6. We have

sup
0 6≡f∈Tn

|f(0)|

‖f‖L2[0,1]
≥ n .

Theorem 2.1.7. There is an absolute constant c > 0 such that

sup
0 6≡f∈Tn

|f(0)|

‖f‖Lq[0,1]
≥ c1+1/q(1 + qn)2/q, q ∈ (0,∞) .

Remark 2.1.8. It remains open what are the right extensions of Theorems 2.1.4 and 2.1.5
to q > 2. Note that Theorem 5.8 implies that

sup
0 6≡f∈Tn

|f(0)|

‖f‖Lq[0,1]
≥ cqn

1/2, q ∈ (0,∞) ,

with a constant cq > 0 depending only on q > 0. Hence

cqn
1/2 ≤ sup

0 6≡f∈Tn

|f(0)|

‖f‖Lq[0,1]
≤ sup

0 6≡f∈Tn

|f(0)|

‖f‖L2[0,1]
≤

πn

2
.

In particular, Theorems 2.1.4 cannot remain true for q > 4. Nevertheless, we can prove
the following two results.

Theorem 2.1.9. We have

|f(0)| ≤ (8 + εn)
1/2 cqn

1/2+1/q‖f(t)e−nt‖Lq[0,1] , f ∈ Tn , q ∈ (2,∞) ,

where εn is the same as in Theorem 2.1.1 and

cq :=

(

q − 2

2q

)(q−2)/(2q)

.

Theorem 2.1.10. We have

‖f‖[0,1] ≤ (8 + εn)
1/2cqn

1/2+1/q‖f‖Lq[0,1] , f ∈ Tn , q ∈ (2,∞) ,

where εn is the same as in Theorem 2.1.1 and cq is the same as in Theorem 2.1.9.
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2.2. An infinite-finite range inequality for E−
n with an application

Our next theorem is an infinite-finite range inequality for all f ∈ E−
n .

Theorem 2.2.1. We have

∫ ∞

0

|f(t)|2e−t dt ≤ (1 + εn)
2

∫ 9n

0

|f(t)|2e−t dt

for every f ∈ E−
n , in particular, for every f ∈ Tn , where (1 + εn)

2 := 1 + 8190 e−n/10.

The theorem below establishes an asymptotically sharp version of Kós’s inequality
|f(0)| ≤ 2n‖f‖L2[0,1] in the presence of the rapidly decreasing weight function w(t) =

e−9nt/2 pushing the L2[0, 1] norm down at the right-hand side.

Theorem 2.2.2. Let εn be the same as in Theorem 2.2.1. We have

|f(0)| ≤ (1 + εn) 3n ‖f(t)e−9nt/2‖L2[0,1] , f ∈ Tn ,

and for every λ1 < λ2 < · · · < λn there is an f ∈ Tn of the form (1.6) such that

|f(0)| > 3n ‖f(t)e−9nt/2‖L2[0,1] .

2.3. A sharp Nikolskii-type inequality

for f ∈ En with nonnegative exponents

Our next theorem establishes the best constant in the inequality |f(0)| ≤ cn‖f‖L2[0,1]

for functions f in a subclass of En.

Theorem 2.3.1. We have

|f(0)| ≤ n‖f‖L2[0,1]

for every f ∈ E+
n of the form

f(t) =

n
∑

j=1

aje
λjt , aj ∈ R , 0 ≤ λ1 < λ2 < · · · < λn .

This inequality is sharp.

2.4. Markov-Nikolskii-type inequalities for Tn

The next theorem establishes an essentially sharp result when |f(0)| is replaced by
|f ′(0)| in Theorem 2.2.2.
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Theorem 2.4.1. Let εn be the same as in Theorem 2.2.1. We have

|f ′(0)| ≤ 27 (1 + εn)n
3/2

(

n
∑

k=1

(

(

λk

9n

)2

+ (k − 1)2

))1/2

‖f(t)e−9nt/2‖L2[0,1]

for every f ∈ Tn of the form (1.6), and for every λ1 < λ2 < · · · < λn there is an f ∈ Tn
of the form (1.6) such that

|f ′(0)| > 27n3/2

(

n
∑

k=1

(

(

λk

9n

)2

+ (k − 1)2

))1/2

‖f(t)e−9nt/2‖L2[0,1] .

The next theorem establishes an essentially sharp result when |f ′(0)| is replaced by
‖f ′‖[0,1] in Theorem 2.4.1.

Theorem 2.4.2. Let εn be the same as in Theorem 2.2.1. We have

‖f ′‖[0,1] ≤ 27 (1 + εn)n
3/2

(

n
∑

k=1

(

2

(

λk

9n

)2

+ 8(k − 1)2

))1/2

‖f‖L2[0,1]

for every f ∈ Tn of the form (1.6).

To formulate our next observation, given n ∈ N and η > 0, we introduce the classes

(2.4.1) Tn(η) :=

{

f : f(t) =
n
∑

j=1

aje
iλjt , aj ∈ C, 0 < λ1 < λ2 < · · · < λn ≤ η

}

.

Theorem 2.4.3. We have

sup
0 6≡f∈Tn(η)

|f ′(0)|

‖f‖L2[0,1]
≥ (1 + ε∗n) 3

−1/2 n3

for every n ∈ N and for every η > 0, where ε∗n (determined exactly in the proof) is a
quantity tending to 0 an n tends to ∞.

2.5. Markov-Nikolskii-type inequalities

for f ∈ En with nonnegative exponents

Our next theorem records how large |f ′(0)| can be if ‖f‖L2[0,1] = 1 for exponential sums
f ∈ En with nonnegative exponents.

Theorem 2.5.1. We have

|f ′(0)| ≤ (1 + ε∗n) 3
−1/2 n3‖f‖L2[0,1]

for every f ∈ E+
n of the form

f(t) =
n
∑

j=1

aje
λjt , aj ∈ R , 0 ≤ λ1 < λ2 < · · · < λn ,

where the quantity ε∗n (determined exactly in the proof) tends to 0 an n tends to ∞. This
inequality is sharp.
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2.6. A pointwise Nikolskii-type inequality for En

The upper bound of the theorem below follows from Lemma 3.5 proved in [7]. We
couple this upper bound with a matching lower bound.

Theorem 2.6.1. We have
(

(n− 2) log 2

32 min{y − a, b− y}

)1/2

≤ sup
0 6≡f∈En

|f(y)|

‖f‖L2[a,b]
≤

(

2n

min{y − a, b− y}

)1/2

for every y ∈ (a, b) ⊂ R.

The theorem below shows a lower bound for

sup
0 6≡f∈Tn

|f(y)|

‖f‖L2[a,b]
.

However, there is a gap between the lower bound of Theorem 2.6.2 and the upper bound
of Theorem 2.6.1.

Theorem 2.6.2. There is an absolute constant c > 0 such that

c min

{

n1/2

(min{y − a, b− y})
1/4

,
n

(b− a)1/2

}

≤ sup
0 6≡f∈Tn(η)

|f(y)|

‖f‖L2[a,b]

for every η > 0 and for every y ∈ [a, b] ⊂ R, where the classes Tn(η) are defined by (2.4.1).

Note that for 0 < η1 < η2 we have Tn(η1) ⊂ Tn(η2), so the statement of Theorem 2.6.2
gets stronger as η > 0 gets smaller since the constant c > 0 in Theorem 2.6.2 is absolute
(independent of n, a, b, y and η).

2.7. An essentially sharp Bernstein-type inequality for Tn

Our next theorem may be viewed as an essentially sharp (up to the constant 2e) Bern-
stein type inequality for all f ∈ Tn at least in the middle of the interval [−1, 1].

Theorem 2.7.1. We have

|f ′(0)| ≤ (λ+ 2e(n+ 1)) ‖f‖[−1,1]

for every f ∈ Tn of the form (1.6), where

(2.7.1) λ := max
1≤j≤n

|λj | , λ1 < λ2 < · · · < λn .

This inequality is sharp up to the factor 2e. Namely, for every real number λ > 0 and
integer n ≥ 1 there is an f ∈ Tn of the form (1.6) with (2.7.1) such that

|f ′(0)| ≥
1

4
(λ+ n− 3) ‖f‖[−1,1] .

Theorem 2.7.1 should be compared with Theorem 5.6 establishing an essentially sharp
Bernstein-type inequality for the classes

En :=

{

f : f(t) = a0 +
n
∑

j=1

aje
λjt , aj , λj ∈ R

}

.
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2.8. Markov-type inequality for Tn

Our next theorem offers a Markov-type inequality for all f ∈ Tn on [0, 1].

Theorem 2.8.1. Let εn be the same as in Theorems 2.2.1, 2.4.1, and 2.4.2. We have

|f ′(0)| ≤ (1 + εn)

(

27n5 +
n
∑

k=1

λ2
k

)1/2

‖f‖[0,1] ,

and

‖f ′‖[0,1] ≤ (1 + εn)

(

108n5 +
n
∑

k=1

λ2
k

)1/2

‖f‖[0,1] ,

for every f ∈ Tn of the form (1.6).

The theorem below shows how far Theorem 2.8.1 is from being sharp.

Theorem 2.8.2. We have

sup
0 6≡f∈Tn(η)

|f ′(0)|

‖f‖[0,1]
≥ 2(n− 1)2

for every n ∈ N and for every η > 0, where the classes Tn(η) are defined by (2.4.1).

Note that for 0 < η1 < η2 we have Tn(η1) ⊂ Tn(η2), so the statement of Theorem 2.8.2
gets stronger as η > 0 gets smaller.

Theorem 2.8.1 should be compared with the p = q = ∞ case of Theorem 5.3 estab-
lishing an essentially sharp Markov-Nikolskii type inequality for the classes E(Λn), where
associated with a set of Λn := {λ0, λ1, . . . , λn} of distinct real numbers

(2.8.2) E(Λn) := span{eλ0t, eλ1t, . . . , eλnt} =







f : f(t) =

n
∑

j=0

aje
λjt , aj ∈ R







.

2.9. Markov-type inequalities for En and

Tn in L2[0,∞) with the Laguerre weight

In this section we use the norm

‖f‖2 :=

(
∫ ∞

0

|f(t)|2e−t dt

)1/2

.

Our first result extends Lubinsky’s Theorem 3.2 in [23] to the case when the exponents
are not necessarily purely imaginary.

11



Theorem 2.9.1. We have

‖f ′‖2 ≤






max
1≤j≤n

|λj |+





n
∑

j=1

(1− 2Re(λj))

n
∑

k=j+1

(1− 2Re(λk))





1/2





‖f‖2

for every f ∈ En of the form

f(t) =

n
∑

j=1

aje
λjt, aj , λj ∈ C , Re(λj) < 1/2 .

The “empty sum” from k = n+ 1 to k = n above is meant to be 0.

The theorem below recaptures Lubinsky’s Theorem 3.2 in [23].

Theorem 2.9.2. We have

‖f ′‖2 ≤

(

max
1≤j≤n

|λj |+

(

n(n− 1)

2

)1/2
)

‖f‖2

for every f ∈ Tn of the form (1.6).

Our next result shows how far Theorems 2.9.2 and 2.9.1 are from being sharp.

Theorem 2.9.3. We have

sup
0 6≡f∈Tn(η)

‖f ′‖2
‖f‖2

≥

(

η2 +

(

2 sin
π

4n− 2

)−1
)1/2

for every η > 0, where Tn(η) is defined by (2.4.1).

The proof of Theorem 2.9.3 depends heavily on a result of Turán. Improving a result
of E. Schmidt, Turán [31] showed that

Mn := sup
0 6≡f∈Pn

‖f ′‖2
‖f‖2

=

(

2 sin
π

4n+ 2

)−1

and the extremal polynomial is

f(t) =

n
∑

j=1

(

sin
jπ

2n+ 1

)

Lj(t) ,

where Pn is the set of all algebraic polynomials of degree at most n with real coefficients
and Lj is the j-th Laguerre polynomial.

We remark that the quantity

Mn,k := sup
0 6≡f∈Pn

maxt∈[0,∞) |f
′(t)e−t|

maxt∈[0,∞) |f(t)e−t|

was examined by Sklyarov [30], who proved that

8kn!k!

(n− k)!(2k)!

(

1−
k

2n

)

≤ Mn,k ≤
8kn!k!

(n− k)!(2k)!

for all integers n ≥ 1 and k ≥ 1.

12



2.10. Markov-type inequalities for E−
n in L2[0,∞)

Our only result in this section is a version of Theorem 2.9.1, a Markov-type inequality
for E−

n in L2[0,∞) without a weight. Let

‖f‖L2[0,∞) :=

(
∫ ∞

0

|f ′(t)|2 dt

)1/2

.

Theorem 2.10.1. We have

‖f ′‖L2[0,∞) ≤







1

2
+ max

1≤j≤n

∣

∣

∣

∣

λj +
1

2

∣

∣

∣

∣

+ 2





n
∑

j=1

Re(λj)
n
∑

k=j+1

Re(λk)





1/2





‖f‖L2[0,∞)

for every f ∈ E−
n of the form

f(t) =
n
∑

j=1

aje
λjt, aj , λj ∈ C , Re(λj) < 0 .

The “empty sum” from k = n+ 1 to k = n above is meant to be 0.

3. Lemmas

Our first lemma is due to Turán; see E.6 b] on page 297 of [4]. In fact, this inequality
plays a central role in Turán’s book [32] as well.

Lemma 3.1. We have

|g(0)| ≤

(

2e(α+ β)

β

)n

‖g‖[α,α+β] , g ∈ E+
n ,

for every α > 0 and β > 0.

In fact, we will need the following consequence of Lemma 3.1.

Lemma 3.2. We have

|f(t)| ≤

(

2e(t− a)

d

)n

‖f‖[a,a+d] ≤

(

2et

d

)n

‖f‖[a,a+d] , f ∈ E−
n ,

for every a > 0, d > 0 and t ≥ a+ d.

Proof of Lemma 3.2. Let f ∈ E−
n . Let g ∈ E+

n be defined by g(x) := f(t− x). Associated
with a > 0, d > 0, t ≥ a+ d we define α := t− (a+ d), β := d. Applying Lemma 3.1 with
g ∈ E+

n we get

|f(t)| = |g(0)| ≤

(

2e(α+ β)

β

)n

‖g‖[α,α+β]

=

(

2e(t− a)

β

)n

‖f‖[a,a+d] ≤

(

2et

d

)n

‖f‖[a,a+d]

�

Our next lemma states the first inequality of part c] of E.2 coupled with part d] of E.2
on page 286 of [4]; see also Corollary 3.3 in [8].
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Lemma 3.3. We have

|y1/2P (y)|

‖P‖L2[0,1]
≤





n
∑

j=1

(1 + 2Re(λj))





1/2

for every Müntz polynomial 0 6≡ P of the form

P (x) =

n
∑

j=1

ajx
λj , aj , λj ∈ C , Re(λj) > −1/2 ,

and for every y ∈ [0, 1]. This inequality is sharp when y = 1.

Using the substitution x = e−t Lemma 3.3 implies the following.

Lemma 3.4. We have

|f(0)| ≤





n
∑

j=1

(1− 2Re(λj))





1/2

‖f(t)e−t/2‖L2[0,∞)

for every f ∈ En of the form

f(t) =

n
∑

j=1

aje
λjt aj ∈ C , Re(λj) < 1/2 .

This inequality is sharp.

The next lemma is from [7].

Lemma 3.5. We have

|f(y)| ≤
(n

δ

)1/2

‖f‖L2[y−δ,y+δ] , f ∈ En ,

for every y ∈ R and δ > 0.

Our next lemma states the second inequality of part c] of E.2 coupled with part d] of
E.2 on page 286 of [4]; see also Corollary 3.3 in [9].

Lemma 3.6. We have

|y3/2P ′(y)|

‖P‖L2[0,1]
≤





n
∑

k=1

(1 + 2Re(λk))
∣

∣

∣
λk +

k−1
∑

j=1

(1 + 2Re(λj))
∣

∣

∣

2





1/2

for every y ∈ [0, 1] and for every Müntz polynomial 0 6≡ P of the form

P (x) =
n
∑

j=1

ajx
λj , aj , λj ∈ C , Re(λj) > −1/2 .

This inequality is sharp when y = 1.

Using the substitution x = e−t Lemma 3.6 implies the following.
14



Lemma 3.7. We have

|f ′(0)|

‖f(t)e−t/2‖L2[0,∞)

≤





n
∑

k=1

(1 + 2Re(λk))
∣

∣

∣
λk +

k−1
∑

j=1

(1 + 2Re(λj))
∣

∣

∣

2





1/2

for every exponential sums 0 6≡ f of the form

f(t) =

n
∑

j=1

aje
iλjt, aj , λj ∈ C , Re(λj) < 1/2 .

This inequality is sharp.

Associated with a set Λn := {λ0, λ1, . . . , λn} of distinct real numbers let

E(Λn) := span{eλ0t, eλ1t, . . . , eλnt} =







f : f(t) =
n
∑

j=0

aje
λjt , aj ∈ R







.

The heart of the proof of our Theorem 2.3.1 is the following pair of comparison lemmas.
The proof of the next couple of lemmas is based on basic properties of Descartes systems,
in particular on Descartes’ Rule of Sign, and on a technique used earlier by P.W. Smith
and Pinkus. Lorentz ascribes this result to Pinkus, although it was P.W. Smith [27] who
published it. I have learned about the method of proofs of these lemmas from Peter
Borwein, who also ascribes it to Pinkus. The proofs of these lemmas are stated as Lemmas
3.3 and 3.4 in [17], where their proofs are also presented. Section 3.2 of [4], for instance,
gives an introduction to Descartes systems. Descartes’ Rule of Signs is stated and proved
on page 102 of [4].

Lemma 3.8. Let ∆n := {δ0 < δ1 < · · · < δn} and Γn := {γ0 < γ1 < · · · < γn} be sets of
real numbers satisfying δj ≤ γj for each j = 0, 1, . . . , n. Let a, b, c ∈ R, a < b ≤ c. Let w
be a not identically 0, continuous function defined on [a, b]. Let q ∈ (0,∞]. We have

sup
0 6≡P∈E(∆n)

|P (c)|

‖Pw‖Lq[a,b]
≤ sup

0 6≡P∈E(Γn)

|P (c)|

‖Pw‖Lq[a,b]
.

Under the additional assumption δn ≥ 0 we also have

sup
0 6≡P∈E(∆n)

|P ′(c)|

‖Pw‖Lq[a,b]
≤ sup

0 6≡P∈E(Γn)

|P ′(c)|

‖Pw‖Lq[a,b]
.

Lemma 3.9. Let ∆n := {δ0 < δ1 < · · · < δn} and Γn := {γ0 < γ1 < · · · < γn} be sets of
real numbers satisfying δj ≤ γj for each j = 0, 1, . . . , n. Let a, b, c ∈ R, c ≤ a < b. Let w
be a not identically 0, continuous function defined on [a, b]. Let q ∈ (0,∞]. We have

sup
0 6≡P∈E(∆n)

|P (c)|

‖Pw‖Lq[a,b]
≥ sup

0 6≡P∈E(Γn)

|P (c)|

‖Pw‖Lq[a,b]
.
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Under the additional assumption γ0 ≤ 0 we also have

sup
0 6≡Q∈E(∆n)

|Q′(c)|

‖Qw‖Lq[a,b]
≥ sup

0 6≡Q∈E(Γn)

|Q′(c)|

‖Qw‖Lq[a,b]
.

An entire function f is said to be of exponential type τ if for any ε > 0 there exists a
constant k(ε) such that |f(z)| ≤ k(ε)e(τ+ε)|z| for all z ∈ C. The following inequality may
be found on p. 102 of [2] and is known as Bernstein’s inequality; see also [3] and [14]. It
can be viewed as an extension of Bernstein’s (trigonometric) polynomial inequality (see p.
232 of [4], for instance) to entire functions of exponential type bounded on the real axis.

Lemma 3.10 (Bernstein’s inequality). We have

sup
t∈R

|f ′(t)| ≤ τ sup
t∈R

|f(t)| .

for every entire function f of exponential type τ > 0 bounded on R.

The reader may find another proof of the above Bernstein’s inequality in [26, pp. 512–
514], where it is also shown that an entire function f of exponential type τ satisfying

|f ′(t0)| = τ sup
t∈R

|f(t)|

at some point t0 ∈ R is of the form

f(z) = aeiτz + be−iτz , a ∈ C, b ∈ C, |a|+ |b| = sup
t∈R

|f(t)| .

Our next lemma is stated as Theorem 6.1.5 on page 282 of [4]; see also Theorem 3.4 in
[9].

Lemma 3.11. We have

‖xP ′(x)‖L2[0,1]

‖P‖L2[0,1]
≤





n
∑

j=1

|λj |
2 +

n
∑

j=1

(1 + 2Re(λj))
n
∑

k=j+1

(1 + 2Re(λk))





1/2

for every Müntz polynomial 0 6≡ P of the form

(3.1) P (x) =

n
∑

j=1

ajx
λj , aj , λj ∈ C , Re(λj) > −1/2 .

The “empty sum” from k = n+ 1 to k = n above is meant to be 0.

In fact, a simple change in the proof (in either references) gives the following.
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Lemma 3.12. We have

‖xP ′(x)‖L2[0,1]

‖P‖L2[0,1]
≤ max

1≤j≤n
|λj |+





n
∑

j=1

(1 + 2Re(λj))

n
∑

k=j+1

(1 + 2Re(λk))





1/2

for every Müntz polynomial 0 6≡ P of the form (3.1). The “empty sum” from k = n+1 to
k = n above is meant to be 0.

Proof of Lemma 3.12. Let P be a Müntz polynomial of the form (3.1). We have

P (x) =

n
∑

k=1

akL
∗
k , ak ∈ C ,

where
L∗
k ∈ span{xλ1 , xλ2 , . . . , xλk}

denotes the kth orthonormal Müntz-Legendre polynomials on [0, 1] associated with

span{xλ1 , xλ2 , . . . , xλn} ,

introduced in Section 3.4 of [4] (the spans here are taken over C). Without loss of generality
we may assume that

(3.2) ‖P‖L2[0,1] =
n
∑

k=1

|ak|
2 = 1 .

As it is observed on page 283 of [4], we have

xP ′(x) =

n
∑

j=1



ajλj +
√

1 + 2Re(λj)

n
∑

k=j+1

ak
√

1 + 2Re(λk)



L∗
j (x)

Hence

(3.3) ‖xP ′(x)‖L2[0,1] ≤ ‖R‖L2[0,1] + ‖S‖L2[0,1] ,

where

R(x) :=

n
∑

j=1

ajλjL
∗
j

and

S(x) :=
n
∑

j=1





√

1 + 2Re(λj)
n
∑

k=j+1

ak
√

1 + 2Re(λk)



L∗
j (x) .
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Using the orthonormality of {L∗
j , j = 1, 2, . . . , n} on [0, 1] and then recalling (3.2), we can

deduce that

‖R‖L2[0,1] =





n
∑

j=1

|ajλj |
2





1/2

≤ max
1≤j≤n

|λj|





n
∑

j=1

|aj |
2





1/2

≤ max
1≤j≤n

|λj | .

(3.4)

Further, combining the orthonormality of {L∗
j , j = 1, 2, . . . , n} on [0, 1] with applications

of the Cauchy-Schwarz inequality to each term of the first sum and then recalling (3.2) we
obtain that

‖S‖2L2[0,1]
=

n
∑

j=1

(1 + 2Re(λj))

∣

∣

∣

∣

∣

∣

n
∑

k=j+1

ak
√

1 + 2Re(λk)

∣

∣

∣

∣

∣

∣

2

≤

n
∑

j=1

(1 + 2Re(λj))

n
∑

k=j+1

(1 + 2Re(λk))

(3.5)

The lemma now follows from (3.3), (3.4) and (3.5). �

4. Proofs of the new results

Proof of Theorem 2.1.1. Let f ∈ Tn. Applying Lemma 3.5 with y ∈ [n, 7n] and δ := n, we
have

‖f‖[n,7n] ≤ ‖f‖L2[0,8n] .

Combining this with Lemma 3.2 we get

|f(t)|2e−t ≤

(

(

2et

6n

)2n

‖f‖2[n,7n]

)

e−t ≤

(

(

et

3n

)2n

‖f‖2L2[0,8n]

)

e−t

≤ e−t/2‖f‖2L2[0,8n]
, t ≥ 8n .

Here we used the fact that

h(t) :=

(

et

3n

)2n

e−t/2

is decreasing on the interval [8n,∞), hence

(

et

3n

)2n

e−t ≤

(

(

et

3n

)2n

e−t/2

)

e−t/2 ≤

(

8e

3

)2n

e−4ne−t/2

≤

(

(8/3)2e2

e4

)n

≤ e−t/2 , t ≥ 8n .
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Hence

∫ ∞

8n

|f(t)|2e−t dt ≤

(∫ ∞

8n

e−t/2 dt

)

‖f‖2L2[0,8n]
≤ 2e−2n

∫ 8n

0

|f(t)|2e−t/4 dt .

This implies that

∫ ∞

0

|f(t)|2e−t dt ≤ (1 + 2e−2n)

∫ 8n

0

|f(t)|2e−t/4 dt .

Combining this with Lemma 3.4 we get

|f(0)| ≤ (1 + 2e−2n)1/2 n1/2 ‖f(t)e−t/8‖L2[0,8n]

Transforming this inequality linearly from the interval [0, 8n] to the interval [0, 1], we get
the first statement of the theorem.

The second statement of the theorem follows from the second statement of Lemma 3.4.
Indeed, for every fixed λ1 < λ2 < · · · < λn there is a 0 6≡ f ∈ Tn of the form (1.6) such
that

|f(0)| ≥ n1/2 ‖f(t)e−t/2‖L2[0,∞) > n1/2 ‖f(t)e−t/2‖L2[0,8n] .

Transforming this inequality linearly from the interval [0, 8n] to the interval [0, 1], we get
the second statement of the theorem. �

Proof of Theorem 2.1.2. Let γ0 := 2 + log 4 < γ ≤ 4 and δ := (γ − γ0)/8 < 1/8. Observe
that γ0 < γ ≤ 4 implies that 0 < δ < 1/8 and hence

γ − 2δ ≥ γ0 − 2δγ0 − 1/4 > 2 .

Combining this with the Mean Value Theorem we obtain

log γ − log(γ − 2δ) < 2δ
1

γ − 2δ
< 2δ

1

2
= δ .

Therefore

2 + log 4 + 2 log
γ

γ − 2δ
− γ + γδ =(γ0 − γ) + 2(log γ − log(γ − 2δ)) + γδ

< − 8δ + 2δ + 4δ = −2δ < 0 ,

hence

(4.1) 4e2
(

γ

γ − 2δ

)2

eγ(δ−1) ≤ 1 .

Let f ∈ Tn. By Lemma 3.5 we have

‖f‖2[δn,(γ−δ)n] ≤ δ−1‖f‖2L2[0,γn]
.
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Combining this with Lemma 3.2 we get

|f(t)|2e−t ≤

(

(

2e(t− δn)

(γ − 2δ)n

)2n

‖f‖2[δn,(γ−δ)n]

)

e−t

≤ δ−1

(

(

2et

(γ − 2δ)n

)2n

‖f‖2L2[0,γn]

)

e−t

≤ δ−1e−δt‖f‖2L2[0,γn]
, t ≥ γn .

Here we used the fact that

h(t) :=

(

2et

(γ − 2δ)n

)2n

e(δ−1)t

is decreasing on the interval [γ,∞) ⊂ [2(1− δ)−1,∞), which, together with (4.1) yields

(

2et

(γ − 2δ)n

)2n

e−t ≤

(

(

2eγ

γ − 2δ)

)2n

e(δ−1)t

)

e−δt

(

(

2eγ

γ − 2δ)

)2n

eγ(δ−1)n

)

e−δt

≤

(

4e2
(

γ

γ − 2δ

)2

eγ(δ−1)

)n

e−δt ≤ e−δt t ≥ γn ,

Hence
∫ ∞

γn

|f(t)|2e−t dt ≤ δ−1

(
∫ ∞

γn

e−δt dt

)

‖f‖2L2[0,γn]

≤ δ−1δ−1e−δγn

∫ γn

0

|f(t)|2 dt .

This implies that

∫ ∞

0

|f(t)|2e−t dt ≤ (1 + δ−2e−δγn)

∫ γn

0

|f(t)|2 dt .

Combining this with Lemma 3.4 we get

|f(0)| ≤ n1/2 ‖f(t)e−t/2‖L2[0,∞) ≤ n1/2(1 + δ−2e−δγn)1/2‖f‖L2[0,γn] .

Transforming this inequality linearly from the interval [0, γn] to the interval [0, 1], we get
the theorem. �

Proof of Theorem 2.1.3. Let y ∈ [−1, 1]. Transforming the inequality of Theorem 2.1.1
(with the constant π/2 rather than (γ + εn)

1/2) linearly to the intervals [0, y] and [y, 1],
respectively, we get

y |f(y)|2 ≤
(πn

2

)2
∫

[0,y]

|f(t)|2 dt
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and

(1− y) |f(y)|2 ≤
(πn

2

)2
∫

[y,1]

|f(t)|2 dt .

Adding these, we conclude that

|f(y)|2 ≤
(πn

2

)2
∫

[0,1]

|f(t)|2 dt ,

and the theorem follows. �

Proof of Theorem 2.1.4. Let f ∈ Tn and q ∈ (0, 2]. Using Theorem 2.1.3 we obtain

‖f‖[0,1] ≤
πn

2
‖f‖L2[0,1] =

πn

2

(
∫ 1

0

|f(t)|2 dt

)1/2

≤
πn

2

(∫ 1

0

|f(t)|q‖f‖2−q
[0,1] dt

)1/2

,

and hence
‖f‖

q/2
[0,1] ≤

πn

2
‖f‖

q/2
Lq[0,1]

,

and the theorem follows. �

Proof of Theorem 2.1.5. When p = ∞ and q ∈ (0, 2], the theorem follows from Theorem
2.1.4. Let 0 < q < p < ∞, q ≤ 2, and f ∈ Tn. Based on Theorem 2.1.4 the proof of the
theorem is fairly routine. We have

‖f‖pLp[0,1]
=

∫

[0,1]

|f(t)|p dt ≤

∫

[0,1]

|f(t)|q‖f‖p−q
[0,1] dt

≤‖f‖qLq[0,1]
‖f‖p−q

[0,1] ≤ ‖f‖qLq[0,1]

(πn

2

)(p−q)2/q

‖f‖p−q
Lq[0,1]

≤
(πn

2

)(p−q)2/q

‖f‖pLq[0,1]
,

and by taking the pth root of both sides the theorem follows. �

Proof of Theorem 2.1.6. The remark following Theorem 7.17.1 on page 182 of [28] asserts
that

sup
0 6≡P∈Pn

|P (1)|

‖P‖L2[−1,1]
= sup

0 6≡P∈Pn

‖P‖[−1,1]

‖P‖L2[−1,1]
= 2−1/2(n+ 1) .

Transformation this linearly from [−1, 1] to [0, 1], we get

sup
0 6≡P∈Pn−1

|P (0)|

‖P‖L2[0,1]
= sup

0 6≡P∈Pn−1

‖P‖[0,1]

‖P‖L2[0,1]
= n .

Now the theorem follows from Remark 1.1. �
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Proof of Theorem 2.1.7. It is well-known; see Theorem 2.1 in [19] or the guided exercise
E.19 on page 413 of [4], for instance, that there is an absolute constant c > 0 such that

sup
0 6≡P∈Pn

|P (1)|

‖P‖Lq[−1,1]
= sup

0 6≡P∈Pn

‖P‖[−1,1]

‖P‖Lq[−1,1]
≥ c1+1/q(1 + qn)2/q

for every q ∈ (0,∞). Transforming this linearly from [−1, 1] to [0, 1] we get that there is
an absolute constant c > 0 such that

sup
0 6≡P∈Pn−1

|P (0)|

‖P‖Lq[0,1]
= sup

0 6≡P∈Pn−1

‖P‖[0,1]

‖P‖Lq[0,1]
≥ c1+1/q(1 + qn)2/q

for every q ∈ (0,∞). Now the theorem follows from Remark 1.1. �

Proof of Theorem 2.1.9. Let q ∈ (2,∞) and let 1/p := (q−2)/q, that is, 1/p+1/(q/2) = 1.
Using Theorem 2.1.1 and Hölder’s inequality, we have

|f(0)|2 ≤ (8 + εn)n
2

∫ 1

0

|f(t)|2e−nte−nt dt

≤ (8 + εn)n
2

(
∫ 1

0

(

|f(t)|2e−nt
)q/2

dt

)2/q (∫ 1

0

∣

∣e−nt
∣

∣

p
dt

)1/p

,

hence

|f(0)| ≤ (8 + εn)
1/2 n‖f(t)e−nt‖Lq[0,1]

(

1

pn

)1/p

≤ (8 + εn)
1/2 n ‖f(t)e−nt‖Lq[0,1]

(

q − 2

2qn

)(q−2)/q

≤ (8 + εn)
1/2 cqn

1/2+1/q‖f(t)e−nt‖Lq[0,1] .

�

Proof of Theorem 2.1.10. Let y ∈ [0, 1]. Transforming the inequality of Theorem 2.1.9
linearly to the intervals [0, y] and [y, 1], respectively, we obtain that

y |f(y)|q ≤
(

(8 + εn)
1/2cqn

1/2+1/q
)q
∫ y

0

|f(t)|q dt

and

(1− y) |f(y)|q ≤
(

(8 + εn)
1/2cqn

1/2+1/q
)q
∫ 1

y

|f(t)|q dt .

Adding these we conclude that

|f(y)|q ≤
(

(8 + εn)
1/2cqn

1/2+1/q
)q
∫ 1

0

|f(t)|q dt ,
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and the theorem follows. �

Proof of Theorem 2.2.1. Let f ∈ E−
n . Let δ := 1/91 and η := 1/90. By Lemma 3.5 we

have
‖f‖[δn,(2−δ)n] ≤ δ−1‖f‖L2[0,2n] .

Combining this with Lemma 3.2 we get

|f(t)|2e−t ≤

(

(

2et

(2− 2δ)n

)2n

‖f‖2[δn,(2−δ)n]

)

e−t ≤

(

(

2et

(2− 2δ)n

)2n

δ−1‖f‖2L2[0,2n]

)

e−t

≤ δ−1

(

2et

(2− 2δ)n

)2n

e2ne−t

(
∫ 2n

0

|f(x)|2e−x dx

)

, t ≥ 2n .

Integrating on [9n,∞], we get

∫ ∞

9n

|f(t)|2e−t dt ≤ δ−1

(

∫ ∞

9n

(

2et

(2− 2δ)n

)2n

e2ne−t dt

)

(
∫ 2n

0

|f(x)|2e−x dx

)

= δ−1

(

sup
t≥9n

(

2et

(2− 2δ)n

)2n

e2ne(η−1)t dt

)

(
∫ ∞

9n

e−ηt dt

)(
∫ 2n

0

|f(x)|2e−x dx

)

≤ δ−1

(
∫ ∞

9n

e−ηt dt

)(
∫ 2n

0

|f(x)|2e−x dx

)

≤ δ−1η−1e−9ηn

(
∫ 2n

0

|f(x)|2e−x dx

)

.

(4.2)

Here we used the fact that

h(t) :=

(

2et

(2− 2δ)n

)2n

e2ne(η−1)t

is decreasing on the interval [9n,∞), hence recalling that δ := 1/91 and η = 1/90, we have

sup
t≥9n

h(t) ≤ ((9.1)e)2ne−(8.9)ne2n = e(2 log(9.1)+2−8.9+2)n ≤ e0 = 1 .

It follows from (4.3) that

∫ ∞

9n

|f(t)|2e−t dt ≤ δ−1η−1e−9ηn

(
∫ 2n

0

|f(x)|2e−x dx

)

,

hence
∫ ∞

0

|f(t)|2e−t dt ≤ (1 + δ−1η−1e−9ηn)

(
∫ 9n

0

|f(x)|2e−x dx

)

.
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Proof of Theorem 2.2.2. Let f ∈ Tn. Lemma 3.4 yields that

|f(0)|2 ≤ n

∫ ∞

0

|f(t)|2e−t dt .

Combining this with Theorem 2.2.1 we have

|f(0)|2 ≤ (1 + εn)
2n

∫ 9n

0

|f(t)|2e−t dt .

Transforming this inequality from the interval [0, 9n] to the interval [0, 1], we obtain

|f(0)|2 ≤ (1 + εn)
29n2

∫ 1

0

|f(u)|2 e−9nu du .

The second statement of the theorem follows from the second statement of Lemma 3.4.
Indeed, for every fixed λ1 < λ2 < · · · < λn there is a 0 6≡ f ∈ Tn of the form (1.6) such
that

|f(0)| = n1/2 ‖f(t)e−t/2‖L2[0,∞) > n1/2 ‖f(t)e−t/2‖L2[0,9n] .

Transforming this inequality linearly from the interval [0, 9n] to the interval [0, 1], we get
the second statement of the theorem. �

Proof of Theorem 2.3.1. Observe that

t = lim
ε→0+

eεt − 1

ε
,

Hence it follows from Lemma 3.8 in a routine fashion that it is sufficient to prove the
inequality only for polynomials P ∈ Pn−1, where Pn−1 denotes the set of all polynomials
of degree at most n−1 with real coefficients, and this has been done in the proof of Theorem
2.1.6. The sharpness of the theorem also follows from the proof of Theorem 2.1.6. �

Proof of Theorem 2.4.1. Let f ∈ Tn be of the form (1.6), and let g ∈ Tn be defined by
g(9nt) := f(t). By Theorem 2.2.1 we have

∫ ∞

0

|g(t)|2e−t dt ≤ (1 + εn)
2

∫ 9n

0

|g(t)|2e−t dt .

Combining this with Lemma 3.7 we get

|f ′(0)| =9n|g′(0)|

≤ 9n

(

n
∑

k=1

(

(

λk

9n

)2

+ (k − 1)2

))1/2

‖g(t)e−t/2‖L2[0,∞)

≤ 9n(1 + εn)

(

n
∑

k=1

(

(

λk

9n

)2

+ (k − 1)2

))1/2

‖g(t)e−t/2‖L2[0,9n]

=9n(1 + εn)

(

n
∑

k=1

(

(

λk

9n

)2

+ (k − 1)2

))1/2

3n1/2‖f(u)e−9nu/2‖L2[0,1] .

24



The second statement of the theorem follows from the second statement of Lemma 3.7.
Indeed, for every fixed λ1 < λ2 < · · · < λn there is a g ∈ Tn such that f ∈ Tn defined by
g(9nt) := f(t) is of the form (1.6) and

|f ′(0)| =9n|g′(0)|

=9n

(

n
∑

k=1

(

(

λk

9n

)2

+ (k − 1)2

))1/2

‖g(t)e−t/2‖L2[0,∞)

> 9n

(

n
∑

k=1

(

(

λk

9n

)2

+ (k − 1)2

))1/2

3n1/2‖f(u)e−9nu/2‖L2[0,1] .

�

Proof of Theorem 2.4.2. Let y ∈ [0, 1]. Transforming the inequality of Theorem 2.4.1
linearly to the intervals [0, y] and [y, 1], respectively, we obtain that

y3 |f ′(y)|2 ≤ 272(1 + εn)
2 n3

(

n
∑

k=1

(

(

yλk

9n

)2

+ (k − 1)2

))1/2
∫ y

0

|f(t)|2 dt

and

(1− y)3 |f ′(y)|2 ≤ 272(1 + εn)
2 n3

(

n
∑

k=1

(

(

(1− y)λk

9n

)2

+ (k − 1)2

))1/2
∫ 1

y

|f(t)|2 dt .

Using the first inequality above if y ∈ [1/2, 1] and the second inequality above if y ∈ [1/2, 1]
we conclude that

|f ′(y)|2 ≤ 272 (1 + εn)
2 n3

(

n
∑

k=1

(

2

(

λk

9n

)2

+ 8(k − 1)2

))

∫ 1

0

|f(t)|2 dt ,

and the theorem follows. �

Proof of Theorem 2.4.3. By Remark 1.1 we have

(4.3) sup
0 6≡f∈Tn

|f ′(0)|

‖f‖L2[0,1]
= sup

0 6≡P∈Pc
n−1

|P ′(0)|

‖P‖L2[0,1]
.

Let Pn ∈ Pn be the n-th orthonormal Legendre polynomial on the interval [0, 1], that is,

∫ 1

0

Pn(x)Pm(x) dx = δn,m .

where δn,m = 1 if n = m and δn,m = 0 if n 6= m. Recall that

(4.4) P ′
k(0) = (−1)kk(k + 1)(2k + 1)1/2 , k = 0, 1, . . . .

25



This can be seen by combining (4.21.7), (4.3.3), and (4.1.4) in [27] and by using a linear
transformation from the interval [−1, 1] to the interval [0, 1]. As a consequence of orthonor-
mality, the Cauchy-Schwarz inequality, and (4.4) it is well known (see E.2 on page 285 of
[4], for instance) that

sup
0 6≡P∈Pn−1

|P ′(0)|

‖P‖L2[0,1]
=

(

n−1
∑

k=0

P ′
k(1)

2

)1/2

=

(

n−1
∑

k=0

k2(k + 1)2(2k + 1)

)1/2

=(1 + ε∗n) 3
−1/2 n3 .

(4.5)

Combining (4.3) and (4.5) gives the theorem. �

Proof of Theorem 2.5.1. It follows from Lemma 3.9 in that it is sufficient to prove the
inequality of the theorem for exponential sums f ∈ E(∆n−1), where

∆n−1 := ∆ǫ
n−1 := {δ0 < δ1 < · · · < δn−1}

with
δj := jε , j = 0, 1, . . . , n− 1

and ε > 0 is sufficiently small. Observe that

t = lim
ε→0

eεt − 1

ε
,

hence for every P ∈ Pn−1 there are fk ∈ E(∆εk
n−1) of the form

fk(t) = P

(

eεkt − 1

εk

)

, εk > 0

such that
lim
k→∞

‖fk − P‖[0,1] = lim
k→∞

‖f ′
k − P ′‖[0,1] = 0 .

Hence, it is sufficient to prove the inequality of the theorem only for polynomials P ∈ Pn−1.
Therefore (4.5) gives the theorem. �

Proof of Theorem 2.6.1. The upper bound follows from Lemma 3.5; see [7] for a proof. To
see the lower bound we proceed as follows. Let Pn ∈ Pn be the n-th orthonormal Legendre
polynomial on the interval [−1, 1], that is,

∫ 1

−1

Pn(x)Pm(x) dx = δn,m ,

where δn,m = 1 if n = m and δn,m = 0 if n 6= m. Let

(4.6) Q(x) =
n
∑

k=0

Pk(0)Pk(x)
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We have

(4.7) ‖Q‖2L2[−1,1] =

n
∑

k=0

Pk(0)
2 and |Q(0)| =

n
∑

k=0

Pk(0)
2 ,

hence
|Q(0)|2

‖Q‖2L2[−1,1]

=

n
∑

k=0

Lk(0)
2 .

It is well known (see p. 165 of [28], for example) that Pk(0) = 0 if k is even, and

|Pk(0)|
2 =

2k + 1

2

(

1

2

)2(
3

4

)2(
5

6

)2

· · ·

(

k − 3

k − 2

)2(
k − 1

k

)2

≥

(

1

2

)2(
2

3

3

4

)(

4

5

5

6

)

· · ·

(

k − 4

k − 3

k − 3

k − 2

)(

k − 2

k − 1

k − 1

k

)

≥
2k + 1

4k
≥

1

2

if k is odd. Combining this with (4.6) and (4.7) gives

|Q(0)|2

‖Q‖2L2[−1,1]

≥
n− 2

4
.

Let f(t) = Q(2e−t − 1)e−t/2. We have

|f(log 2)|

‖f‖L2[0,∞)
=

|Q(0)|

21/2 ‖Q‖L2[−1,1]

≥
(n− 2)1/2

81/2
.

Transforming the above inequality linearly from the interval [0,∞) to [a,∞) and (−∞, b],
we get the the lower bound of the theorem. �

Proof of Theorem 2.6.2. Theorem 2.1 of [19] implies that there is an absolute constant
c > 0 such that

c min

{

n1/2

(1− y2)1/4
, n

}

≤ sup
0 6≡P∈Pn−1

|P (y)|

‖P‖L2[−1,1]
,

for every y ∈ [−1, 1]. Hence the theorem follows from Remark 1.1. �

Proof of Theorem 2.7.1. Let f ∈ Tn be of the form (1.6) with (2.7.1). Let m be an integer
such that n ≤ 2m. We define the entire function of type λ+ 2m by

g(z) := f(z)

(

sin z

z

)2m

.
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By Bernstein’s inequality we have

(4.8) |f ′(0)| = |g′(0)| ≤ (λ+ 2m) sup
t∈R

|g(t)| .

Lemma 3.2 implies that

(4.9) |g(t)| ≤

(

2et

2e

)n

‖f‖[0,2e]

(

| sin t|

t

)2m

≤ tn−2m‖f‖[0,2e] ≤ ‖f‖[0,2e] , t ≥ 2e ,

and, as | sin t| ≤ t for all t ≥ 0, obviously

(4.10) |g(t)| ≤ |f(t)| , t ∈ [0, 2e] .

Combining (4.9) and (4.10) we have

(4.11) sup
t∈[0,∞)

|g(t)| ≤ ‖f‖[0,2e] ,

and similarly

(4.12) sup
t∈(−∞,0]

|g(t)| ≤ ‖f‖[−2e,0] .

Using (4.8), (4.11), and (4.12), we conclude

|f ′(0)| ≤ (λ+ 2m) ‖f‖[−2e,2e] .

Transforming the above inequality linearly from the interval [−2e, 2e] to the interval [−1, 1],
and choosing m so that n = 2m if n is even, and n+ 1 = 2m if n is odd, we get the upper
bound of the theorem. To see the sharpness of the upper bound up to the factor 2e,
we pick f(t) := sinλt if λ ≥ n ≥ 2, and f(t) = Tm(ε−1 sin(εt)) with a sufficiently small
ε > 0, where Tm is the Chebyshev polynomial of degree m defined by Tm(cos θ) = cos(mθ),
θ ∈ [0, 2π), and m is the largest odd integer such that 2m+ 1 ≤ n. �

Proof of Theorem 2.8.1. Let y ∈ [0, 1]. Let f ∈ Tn be of the form (1.6). Transforming the
inequality of Theorem 2.4.1 linearly from the interval [0, 1] to the intervals [0, y] and [y, 1],
respectively, we obtain that

y3|f ′(y)|2 ≤ 272 (1 + εn)
2 n3

(

n
∑

k=1

(

(

λk

9n

)2

+ (k − 1)2

))

∫ y

0

|f(u)|2e−9n(y−u)/y du

≤ 272 (1 + εn)
2 n3

(

n
∑

k=1

(

(

yλk

9n

)2

+ (k − 1)2

))

y

9n
‖f‖2[0,y] ,
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and

(1− y)3|f ′(y)|2

≤ (1 + εn)
2 n3

(

n
∑

k=1

(

(

(1− y)λk

n

)2

+ (k − 1)2

))

∫ y

0

|f(u)|2e−9n(y−u)/(1−y) du

≤ 272 (1 + εn)
2 n3

(

n
∑

k=1

(

(

(1− y)λk

9n

)2

+ (k − 1)2

))

1− y

9n
‖f‖2[y,1] .

Using the second inequality with y = 0, we get the first inequality of the theorem. Using
the first inequality above if y ∈ [1/2, 1] and the second inequality above if y ∈ [0, 1/2] we
get

|f ′(y)|2 ≤ 272(1 + εn)
2 n3

(

n
∑

k=1

(

(

λk

9n

)2

+ 4(k − 1)2

))

1

9n
‖f‖2[0,1],

and the first statement of the theorem follows. �

Proof of Theorem 2.8.2. Let Qn ∈ Pn be defined by Qn(x) = Tn(2x− 1), where Tn is the
Chebyshev polynomial of degree n on [−1, 1] defined by Tn(cos θ) = cos(nθ) . As

|P ′
n(0)| = 2n2 = 2n2‖Pn‖[0,1] ,

the theorem follows from Remark 1.1. �

Proof of Theorem 2.9.1. This follows from Lemma 3.12 by the substitution x = e−t. �

Proof of Theorem 2.9.2. This follows from Theorem 2.9.1 immediately. �

Proof of Theorem 2.9.3. Let g ∈ Pn−1 be defined by

g(t) =
n−1
∑

j=1

(

sin
jπ

2n− 1

)

Lj(t) ,

where Lj is the jth Laguerre polynomial. Associated with η > 0 we define f(t) := eiηtg(t).
We have

f ′(t) = eiηt(f ′(t) + iηf(t)) ,

and

‖f ′‖2
‖f‖2

=

(

η2 +

(

2 sin
π

4n− 2

)−1
)1/2

follows from the result of Turán [31] stated in Section 2.9 after Theorem 2.9.3. Using
Remark 1.1 we can easily see that there are 0 6≡ fk ∈ Tn(η) such that

lim
k→∞

‖fk − f‖2 = 0 and lim
k→∞

‖f ′
k − f ′‖2 = 0 ,
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and hence

sup
0 6≡f∈Tn(η)

‖f ′‖2
‖f‖2

≥ sup
k∈N

‖f ′
k‖2

‖fk‖2
=

(

η2 +

(

2 sin
π

4n− 2

)−1
)1/2

.

�

Proof of Theorem 2.10.1. Observe that if 0 6≡ f ∈ E−
n is of the form

f(t) =
n
∑

j=1

aje
λjt, aj, λj ∈ C , Re(λj) < 0 ,

then g ∈ En defined by g(t) = f(t)et/2 is of the form

g(t) =

n
∑

j=1

aje
λjt, aj, λj ∈ C , Re(λj) < 1/2 .

Now an application of Theorem 2.9.1 to g gives
∥

∥(
(

f ′(t)et/2 + 1
2
f(t)et/2)

)

e−t/2
∥

∥

L2[0,∞)

‖f(t)et/2e−t/2‖L2[0,∞)

=
‖(g′(t)e−t/2‖L2[0,∞)

‖g(t)e−t/2‖L2[0,∞)

≤ max
1≤j≤n

∣

∣

∣

∣

λj +
1

2

∣

∣

∣

∣

+





n
∑

j=1

(

1− 2Re

(

λj +
1

2

)) n
∑

k=j+1

(

1− 2Re

(

λk +
1

2

))





1/2

,

hence

‖f ′‖L2[0,∞)

‖f‖L2[0,∞)
≤

1

2
+ max

1≤j≤n

∣

∣

∣

∣

λj +
1

2

∣

∣

∣

∣

+ 2





n
∑

j=1

Re(λj)
n
∑

k=j+1

Re(λk)





1/2

.

�

5. Appendix

The paper is self-contained without the results listed in this section. The results below
are closely related to our new results in this paper. Theorems 5.1–5.6 have been proved by
subtle Descartes system methods which can be employed in the case of exponential sums
with only real exponents but not in the case of complex exponents. The reader may find
it useful to compare the results in this section with the new results of the paper.

Associated with a set Λn := {λ0, λ1, . . . , λn} of distinct real numbers let

E(Λn) := span{eλ0t, eλ1t, . . . , eλnt} =







f : f(t) =

n
∑

j=0

aje
λjt , aj ∈ R







.

The following result was proved in [15].
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Theorem 5.1. Suppose Λn := {λ0, λ1, . . . , λn} is a set of distinct nonnegative real num-
bers. Let 0 < q ≤ p ≤ ∞. Let µ be a non-negative integer. There are constants
c1 = c1(p, q, µ) > 0 and c2 = c2(p, q, µ) depending only on p, q, and µ such that

c1





n
∑

j=0

λj





µ+1/q−1/p

≤ sup
0 6≡f∈E(Λn)

‖f (µ)‖Lp(−∞,0]

‖f‖Lq(−∞,0]
≤ c2





n
∑

j=0

λj





µ+1/q−1/p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞ and µ ≥ 0, while the upper bound holds
when µ = 0 and 0 < q ≤ p ≤ ∞, and when µ ≥ 1, p ≥ 1, and 0 < q ≤ p ≤ ∞. Also, there
are constants c1 = c1(q, µ) > 0 and c2 = c2(q, µ) depending only on q and µ such that

c1





n
∑

j=0

λj





µ+1/q

≤ sup
0 6≡f∈E(Λn)

|f (µ)(y)|

‖f‖Lq(−∞,y]
≤ c2





n
∑

j=0

λj





µ+1/q

for all 0 < q ≤ ∞, µ ≥ 1, and y ∈ R.

Extending the main result of [1], in [16] we proved the following couple of theorems.

Theorem 5.2. Suppose Λn := {λ0, λ1, . . . , λn} is a set of distinct real numbers. Let
0 < q ≤ p ≤ ∞, a, b ∈ R, and a < b. There are constants c3 = c3(p, q, a, b) > 0 and
c4 = c4(p, q, a, b) depending only on p, q, a, and b such that

c3



n2 +

n
∑

j=0

|λj |





1/q−1/p

≤ sup
0 6≡f∈E(Λn)

‖f‖Lp[a,b]

‖f‖Lq[a,b]
≤ c4



n2 +

n
∑

j=0

|λj |





1/q−1/p

.

Theorem 5.3. Suppose Λn := {λ0, λ1, . . . , λn} is a set of distinct real numbers. Let
0 < q ≤ p ≤ ∞, a, b ∈ R, and a < b. There are constants c5 = c5(p, q, a, b) > 0 and
c6 = c6(p, q, a, b) depending only on p, q, a, and b such that

c5



n2 +
n
∑

j=0

|λj|





1+1/q−1/p

≤ sup
0 6≡f∈E(Λn)

‖f ′‖Lp[a,b]

‖f‖Lq[a,b]
≤ c6



n2 +
n
∑

j=0

|λj |





1+1/q−1/p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞, while the upper bound holds when
p ≥ 1 and 0 < q ≤ p ≤ ∞.

Using the L∞ norm on a fixed subinterval [a + δ, b − δ] ⊂ [a, b] in the numerator in
Theorem 5.2, we proved the following essentially sharp result in [7]. For the sake of
brevity let

‖f‖A := sup
t∈A

|f(t)|

for a complex-valued function f defined on a set A ⊂ R.
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Theorem 5.4. Let a, b ∈ R, a < b. If Λn := {λ0, λ1, . . . , λn} is a set of distinct real
numbers, then the inequality

‖f‖[a+δ,b−δ] ≤ e81/p
(

n+ 1

δ

)1/p

‖f‖Lp[a,b]

holds for every f ∈ E(Λn), p > 0 and δ ∈
(

0, 12 (b− a)
)

.

The key to Theorem 5.4 is the following Remez-type inequality proved also in [7]. For
the sake of brevity let

En :=

{

f : f(t) = a0 +

n
∑

j=1

aje
λjt , aj , λj ∈ R

}

and
En(s) := {f ∈ En : m ({x ∈ [−1, 1] : |f(x)| ≤ 1}) ≥ 2− s} ,

where m(A) denotes the Lebesgue measure of a measurable set A ⊂ R.

Theorem 5.5. Let s ∈
(

0, 1
2

]

. There are absolute constants c7 > 0 and c8 > 0 such that

exp(c7 min{ns, (ns)2}) ≤ sup
f∈En(s)

|f(0)| ≤ exp(c8 min{ns, (ns)2}) .

An essentially sharp Bernstein-type inequality for En is proved in [5].

Theorem 5.6. Let a, b ∈ R, a < b. We have

1

e− 1

n− 1

min{y − a, b− y}
≤ sup

0 6≡f∈En

|f ′(y)|

‖f‖[a,b]
≤

2n− 1

min{y − a, b− y}
, y ∈ (a, b) .

Having real exponents λj in Theorems 5.1–5.6 is essential in the proofs using subtle
Descartes system methods. There are other important inequalities proved for the classes
E(Λn) associated with a set Λn := {λ0, λ1, . . . , λn} of distinct real exponents; see [6], for
instance, where the proofs are using Descartes system methods as well.

Let Vn be a vector space of complex-valued functions defined on R of dimension n + 1
over C. We say that Vn is shift invariant (on R) if f ∈ Vn implies that fa ∈ Vn for every
a ∈ R, where fa(x) := f(x − a) on R. Associated with a set Λn := {λ0, λ1, . . . , λn} of
distinct COMPLEX numbers let

Ec(Λn) := span{eλ0t, eλ1t, . . . , eλnt} =







f : f(t) =

n
∑

j=0

aje
λjt, aj ∈ C







.

Elements of Ec(Λn) are called exponential sums of n+1 terms. Examples of shift invariant
spaces of dimension n+1 include Ec(Λn). In [8] we proved a result analogous to Theorem
5.4 for exponential sums with complex exponents λj , in which case Descartes system
methods cannot help us in the proof.
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Theorem 5.7. Let a, b ∈ R, a < b. Let Vn ⊂ C[a, b] be a shift invariant vector space of
complex-valued functions defined on R of dimension n+ 1 over C. We have

‖f‖[a+δ,b−δ] ≤ 22/p
2

(

n+ 1

δ

)1/p

‖f‖Lp[a,b]

for every f ∈ Vn, p ∈ (0, 2], and δ ∈
(

0, 1
2
(b− a)

)

, and

‖f‖[a+δ,b−δ] ≤ 21/2
(

n+ 1

δ

)1/2

(b− a)(p−2)/p‖f‖Lp[a,b]

for every f ∈ Vn, p ≥ 2, and δ ∈
(

0, 12 (b− a)
)

.

It is well known by considering the case of algebraic polynomials of degree n that, in
general, the size of the factor (n+ 1)1/p in Theorem 5.7 cannot be improved for p ∈ (0, 2].
On the other hand, for p ≥ 2 the size of the factor (n+ 1)1/2 in the inequality

‖f‖[a+δ,b−δ] ≤ 21/2
(

n+ 1

δ

)1/2

‖f‖L2[a,b]

≤ 21/2
(

n+ 1

δ

)1/2

(b− a)(p−2)/(2p)‖f‖Lp[a,b]

cannot be improved. This can be seen by taking lacunary trigonometric polynomials; see
the theorem below from [33, p. 215].

Theorem 5.8. Let (kj) be a strictly increasing sequence of nonnegative integers satisfying

kj+1 > αkj , j = 1, 2, . . . ,

where α > 1. Let

Qn(t) =

n
∑

j=1

cos(2πkj(t− θj,n)) , θj,n ∈ R .

There are constants Aq,α > 0 and Bq,α > 0 depending only on q and α such that

Aq,αn
1/2 ≤ ‖Qn‖Lq[0,1] ≤ Bq,αn

1/2

for every n ∈ N and q > 0.
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21. G. Kós, Two Turán type inequalities, Acta Math. Hungar. 119 (2008), 219–226.

22. M. Lachance, E.B. Saff, and R. Varga,, Inequalities for polynomials with a prescribed zero,

Math. Z. 168 (1979), 105-116.

23. D.S. Lubinky, Orthogonal Dirichlet polynomials with Laguerre weight, J. Approx. Theory

194 (2015), 146–156.

24. F. Nazarov, Local estimates for exponential polynomials and their applications to inequalities

of the uncertainty type, Algebra i Analiz (4) 5 (1993), 3–66.

25. S.M. Nikolskii, Inequalities for entire functions of finite degree and their application in the

theory of differentiable functions of several variables, Trudy Mat. Inst. Steklov 38 (1951),
244–278.

26. Q.I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Clarendon Press, Oxford,
2002.

27. P. W. Smith, An improvement theorem for Descartes systems, Proc. Amer. Math. Soc. 70
(1978), 26–30.
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