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Abstract. Let Λn−1 := {λ1, λ2, . . . , λn} be a set of n distinct positive numbers. The span

of

{e−λ1t, e−λ2t, . . . , e−λnt}
over R will be denoted by

E(Λn−1) := span{e−λ1t, e−λ2t, . . . , e−λnt} .

Our main result of this note is the following.

Theorem. Suppose 0 < q ≤ p ≤ ∞. Let µ be a non-negative integer. Then there are

constants c1(p, q, µ) > 0 and c2(p, q, µ) > 0 depending only on p, q, and µ such that

c1(p, q, µ)

0
@

nX
j=1

λj

1
A

µ+ 1
q
− 1

p

≤ sup
Q∈E(Λn−1)

‖Q(µ)‖Lp[0,∞)

‖Q‖Lq [0,∞)

≤ c2(p, q, µ)
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λj

1
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µ+ 1
q
− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞ and for all µ ≥ 0, while the upper bound

holds when µ = 0 and 0 < q ≤ p ≤ ∞ and when µ ≥ 1, p ≥ 1, and 0 < q ≤ p ≤ ∞.

1. Introduction and Notation

Let Λn := {λ0, λ1, . . . , λn} be a set of n + 1 distinct non-negative numbers. The span
of

{xλ0 , xλ1 , . . . , xλn}
over R will be denoted by

M(Λn) := span{xλ0 , xλ1 , . . . , xλn}.

Elements of M(Λn) are called Müntz polynomials of n + 1 terms. The span of

{e−λ0t, e−λ1t, . . . , e−λnt}
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over R will be denoted by

E(Λn) := span{e−λ0t, e−λ1t, . . . , e−λnt}.

Elements of E(Λn) are called exponential sums of n + 1 terms.
For a function f defined on a set A let

‖f‖A := sup{|f(x)| : x ∈ A} ,

and let

‖f‖LpA :=
(∫

A

|f(x)|p dx

)1/p

, p > 0 ,

whenever the Lebesgue integral exists. Newman’s beautiful inequality (see [1] and [4]) is
an essentially sharp Markov-type inequality for M(Λn) on [0, 1] in the case when each λj

is non-negative.

Theorem 1.1 (Newman’s Inequality). Let Λn := {λ0, λ1, . . . , λn} be a set of n + 1
distinct non-negative numbers. Then

2
3

n∑
j=0

λj ≤ sup
0 6=Q∈M(Λn)

‖xQ′(x)‖[0,1]

‖Q‖[0,1]
≤ 9

n∑
j=0

λj ,

or equivalently
2
3

n∑
j=0

λj ≤ sup
0 6=Q∈E(Λn)

‖Q′‖[0,∞]

‖Q‖[0,∞]
≤ 9

n∑
j=0

λj .

An Lp version of this is established in [1], [2], and [3].

Theorem 1.2. Let 1 ≤ p ≤ ∞. Let Let Λn := {λ0, λ1, . . . , λn} be a set of n + 1 distinct
real numbers greater than −1/p. Then

‖xQ′(x)‖Lp[0,1] ≤

1/p + 9


 n∑

j=0

(λj + 1/p)




 ‖Q‖Lp[0,1]

for every Q ∈ M(Λn). This follows from the fact that if Λn := {λ0, λ1, . . . , λn} is a set of
n + 1 distinct non-negative numbers, then

‖Q′‖Lp[0,∞) ≤ 9


 n∑

j=0

γj


 ‖Q‖Lp[0,∞)

for every Q ∈ E(Λn).

A simple consequence of Theorem 1.1 is the following.
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Theorem 1.3 (Nikolskii-Type Inequality). Suppose 0 < q ≤ p ≤ ∞. Let Λn :=
{λ0, λ1, . . . , λn} be a set of n + 1 distinct real numbers greater than −1/q. Then

‖x1/q−1/pQ(x)‖Lp[0,1] ≤ c(p, q)


 n∑

j=0

(λj + 1/q)




1/q−1/p

‖Q‖Lq[0,1]

for every Q ∈ M(Λn). Equivalently, if Λn := {λ0, λ1, . . . , λn} is a set of n + 1 distinct
non-negative numbers, then

‖Q‖Lp[0,∞) ≤ c(p, q)


 n∑

j=0

λj




1/q−1/p

‖Q‖Lq[0,∞)

for every Q ∈ E(Λn). In both inequalities

c(p, q) := (18 · 2q)1/q−1/p

is a suitable choice.

The purpose of this note is to show that both Theorems 1.2 and 1.3 are essentially
sharp.

2. New Results

The upper bound in our main theorem below follows as a combination of Theorems 1.2
ans 1.3. The novelty of this note is the establishment of the lower bound.

Theorem 2.1. Let Λn−1 := {λ1, λ2, . . . , λn} be a set of n distinct positive numbers.
Suppose 0 < q ≤ p ≤ ∞. Let µ be a non-negative integer. Then there are constants
c1(p, q, µ) > 0 and c2(p, q, µ) > 0 depending only on p, q, and µ such that

c1(p, q, µ)


 n∑

j=1

λj




µ+ 1
q− 1

p

≤ sup
Q∈E(Λn−1)

‖Q(µ)‖Lp[0,∞)

‖Q‖Lq[0,∞)
≤ c2(p, q, µ)


 n∑

j=1

λj




µ+ 1
q− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞ and for all µ ≥ 0, while the upper
bound holds when µ = 0 and 0 < q ≤ p ≤ ∞ and when µ ≥ 1, p ≥ 1, and 0 < q ≤ p ≤ ∞.

3. Proofs

Proof of Theorem 2.1. As we have already remarked, we need to prove only the lower
bound. To this end without loss of generality we may assume that the elements of Λn−1

satisfy
∑n

j=1 λj = 1; the general result follows by a linear scaling. Then the Newman
“polynomial” Tn ∈ E(Λn−1) is defined by

(3.1) Tn(t) :=
1

2πi

∫
Γ

e−zt

Bn(z)
dz ,
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where

Γ := {z ∈ C : |z − 1| = 1} and Bn(z) :=
n∏

j=1

z − λj

z + λj
.

By the residue theorem

Tn(t) =
n∑

j=1

(B′
n(λj))−1e−λjt ,

and hence Tn ∈ E(Λn−1). We claim that

(3.2) |Bn(z)| ≥ 1
3

, z ∈ Γ .

Indeed, it is easy to see that 0 ≤ λj ≤ 1 implies

∣∣∣∣z − λj

z + λj

∣∣∣∣ ≥ 2− λj

2 + λj
=

1− 1
2λj

1 + 1
2λj

, z ∈ Γ .

So, for z ∈ Γ,

|Bn(z)| ≥
n∏

j=1

1− 1
2λj

1 + 1
2λj

=
1− 1

2

1 + 1
2

=
1
3

,

where the inequality

1− x

1 + x

1− y

1 + y
=

1− (x + y)
1 + (x + y)

+
2xy(x + y)

(1 + x)(1 + y)(1 + (x + y))

≥ 1− (x + y)
1 + (x + y)

, x, y ≥ 0 ,

was used. We will examine Tn,k ∈ E(Λn−1) defined by

Tn,k(t) := T (k)
n (z) =

1
2πi

∫
Γ

(−z)k exp(−zt)
Bn(z)

dz .

Note that the circle Γ can be parametrized as

Γ := {− exp(iu) + 1 , u ∈ [−π, π)} ,

where for z = − exp(iu) + 1, u ∈ [−π, π), we have

|z| = | − exp(iu) + 1| ≤ |u|

and

| exp(−zt)| ≤ exp(Re(−zt)) = exp((−1 + cos u)t) ≤ exp
(
− tu2

12

)
.
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Using the above inequalities together with (3.2), we obtain that

|Tn,k(t)| ≤
∣∣∣∣ 1
2πi

∫ π

−π

(−(− exp(iu) + 1))k exp(−(− exp(iu) + 1)t)
Bn(− exp(iu) + 1)

i exp(iu) du

∣∣∣∣
≤ 1

2π

∫ π

−π

| − exp(iu) + 1|k |exp(−(− exp(iu) + 1)t)|
|Bn(− exp(iu) + 1)| | exp(iu)| du

≤ 3
2π

∫ π

−π

|u|k exp
(
− tu2

12

)
du

≤ 3
2π

∫ 2π

0

(
u
√

t√
12

)k

exp

(
−
(

u
√

t√
12

)2
) √

t√
12

(√
12√
t

)k+1

du

≤ 3
2π

(∫ ∞

0

vk exp(−v2) dv

)(√
12√
t

)k+1

≤ c(k)12(k+1)/2t−(k+1)/2

with a constant c(k) depending only on k. Also,

|Tn,k(t)| ≤
∣∣∣∣ 1
2πi

∫ π

−π

(−(− exp(iu) + 1))k exp(−(− exp(iu) + 1)t)
Bn(− exp(iu) + 1)

i exp(iu) du

∣∣∣∣
≤ 1

2π

∫ π

−π

| − exp(iu) + 1|k |exp(−(− exp(iu) + 1)t)|
|Bn(− exp(iu) + 1)| | exp(iu)| du

≤ 3
2π

2π2k ≤ 3 · 2k .

So with k := b4/qc we have

‖Tn,k‖Lq[0,∞) ≤
(∫ ∞

1

|Tn,k(t)|q dt +
∫ 1

0

|Tn,k(t)|q dt

)1/q

(∫ ∞

1

c(k)12(k+1)q/2t−(k+1)q/2 dt + 3q · 2kq

)1/q

≤
(

c(k)12(b4/qc+1)/2

∫ ∞

1

t−2 dt + 3q · 24

)1/q

≤ C(q) < ∞

(3.3)

with a constant C(q) depending only on q, and

(3.4) ‖Tn,k‖[0,∞) ≤ C(∞) < ∞ .

Now observe that

|T (µ)
n,k (0)| = 1

2πi

∫
Γ

(−z)k+µ

Bn(z)
dz .
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Here, for all z ∈ C with |z| > 1 ≥ max1≤j≤n |λj|, we have

zk+µ

Bn(z)
= zk+µ

n∏
j=1

1 + λj/z

1− λj/z
= zk+µ

n∏
j=1

(
1 + 2

∞∑
m=1

(
λj

z

)m
)

= zk+µ−1

(
z + 2 +

∞∑
m=1

Am

zm

)

with a constant Am ≥ 1/m!. Therefore

(3.5) |T (µ)
n,k (0)| ≥ 1

(k + µ)!
.

Pick a point y ∈ [0,∞) so that

|T (µ)
n,k (y)| = ‖T (µ)

n,k‖[0,∞) .

Note that T
(µ)
n,k ∈ E(Λn−1). Combining the upper bound of Theorem 1.1 (Newman’s

inequality) with the Mean Value Theorem, we obtain that

|T (µ)
n,k (t)| ≥ 1

2
‖T (µ)

n,k‖[0,∞) , t ∈ I :=
[
y, y +

1
18

]
.

Hence (3.5) and k := b4/qc implies that

‖T (µ)
n,k‖Lp[0,∞) ≥

(
1
18

(
1
2
‖T (µ)

n,k‖[0,∞)

)p)1/p

≥
(

1
18

(
1
2

1
(k + µ)!

)p)1/p

≥ c(p, q, µ) > 0

(3.6)

and

(3.7) ‖T (µ)
n,k‖[0,∞) ≥ 1

(k + µ)!
≥ c(∞, q, µ)

Combining (3.3)–(3.7) finishes the proof. �
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