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Abstract. For a prime p the polynomial

fp(z) :=

p−1
∑

k=1

(

k

p

)

zk ,

where the coefficients are Legendre symbols, is called the p-th Fekete polynomial. In this

paper the size of the Fekete polynomials on subarcs is studied. We prove essentially sharp

bounds for the average value of |fp(z)|q , 0 < q < ∞, on subarcs of the unit circle even in
the cases when the subarc is rather small. Our upper bounds are matching with the lower

bounds proved in a preceding paper for the L0 norm of the Fekete polynomials on subarcs of
the unit circle.

1. Introduction

Finding polynomials in the class

Ln :=

{

Q : Q(z) =
n
∑

k=0

akz
k , ak ∈ {−1, 1}

}

,

with small uniform norm on the unit circle raised the interest of many authors. Observe
that the uniform norm of any polynomial in Ln on the unit circle is always at least (n+1)1/2

since the L2 norm of any such polynomial is (2π(n+ 1))1/2 by the Parseval formula. It is
difficult to exhibit a polynomial Q ∈ Ln with uniform norm at most C(n+ 1)1/2 for all n
with an absolute constant C. An example known was found by H.S. Shapiro [Sh-51] and
W. Rudin [Ru-59]. A nice account of this and related problems were given by Littlewood
in [Li-69, pages 25–32]. For a prime number p the p-th Fekete polynomial is defined as

fp(z) :=

p−1
∑

k=1

(

k

p

)

zk ,
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where
(

k

p

)

=











1, if x2 ≡ k (mod p) has a nonzero solution,

0, if p divides k ,

−1, otherwise

is the usual Legendre symbol. Since fp has constant coefficient 0, it is not a Littlewood
polynomial, but gp(z) := fp(z)/z is a Littlewood polynomial, and has the same modulus as
fp has on the unit circle. Fekete polynomials are examined in detail in [B-02] and [CG-00].

Let α < β be real numbers. The Mahler measure M0(Q, [α, β]) is defined for bounded
measurable functions Q(eit) defined on [α, β] as

M0(Q, [α, β]) := exp

(

1

β − α

∫ β

α

log |Q(eit)| dt
)

.

It is well known that
M0(Q, [α, β]) = lim

q→0+
Mq(Q, [α, β]) ,

where

Mq(Q, [α, β]) :=

(

1

β − α

∫ β

α

∣

∣Q(eit)
∣

∣

q
dt

)1/q

, q > 0 .

It is a simple consequence of the Jensen formula that

M0(Q, [0, 2π]) = |c|
n
∏

k=1

max{1, |zk|}

for every polynomial of the form

Q(z) = c
n
∏

k=1

(z − zk) , c, zk ∈ C .

In [M-80] Montgomery proved that there is an absolute constant c such that

max
t∈[0,2π]

|fp(eit)| ≤ cp1/2 log p

for all primes p. In fact a closer look of his argument shows that combining Lemma 1.1 due
to Gauss and the upper bound for the Lebesgue constant for trigonometric interpolation
on equidistant nodes given in [CR-76, Theorem 1] implies that

max
t∈[0,2π]

|fp(eit)| ≤ p1/2
(

5

3
+

2

π
log

p− 1

2

)

.

Montgomery [Mo-80] also showed that the lower bound

2

π
p1/2 log log p < max

t∈[0,2π]
|fp(eit)|
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holds for all sufficiently large primes p. No better upper and lower bounds than those of
Montgomery are known even today.

In [EL-07] we proved that for every ε > 0 there is a constant cε such that

(1.1) M0(fp, [0, 2π]) ≥
(

1

2
− ε

)

p1/2

for all primes p ≥ cε. One of the key lemmas in the proof of the above theorem formulates
a remarkable property of the Fekete polynomials. A simple proof of it is given in [B-02,
pp. 37-38].

Lemma 1.1 (Gauss). We have

fp(z
j
p) = εp

(

j

p

)

p1/2 , j = 1, 2, . . . , p− 1 ,

and fp(1) = 0, where

zp := exp

(

2πi

p

)

is the first p-th root of unity, and εp ∈ {−1, 1,−i, i}.
The choice of εp is more subtle. This is also a result of Gauss, see [Hua-82].

Lemma 1.2 (Gauss). In Lemma 1.1 we have

εp =

{

1, if p ≡ 1 (mod4)

i, if p ≡ 3 (mod4) .

In [Er-11] the author extended (1.1) to subarcs of the unit circle. Namely it is proved
that there is an absolute constant c1 > 0 such that

M0(fp, [α, β]) ≥ c1p
1/2

for all prime numbers p and for all α, β ∈ R such that (log p)3/2p−1/2 ≤ β − α ≤ 2π.

2. New Results

We give an upper bound for the average value of |fp(z)|q over any subarc I of the unit
circle, valid for all sufficiently large primes p and exponents q > 0.

Theorem 2.1. There is a constant c2(q, ε) depending only on q > 0 and ε > 0 such that
(

1

|I|

∫

I

|fp(z)|q |dz|
)1/q

≤ c2(q, ε)p
1/2 ,

for every subarc I of the unit circle with length |I| ≥ 2p−1/2+ε.

We remark that together with the result from [Er-10] mentioned at the end of the
Introduction, Theorem 2.1 shows that there is an absolute constant c1 > 0 and a constant
c2(q, ε) > 0 depending only on q > 0 and ε > 0 such that

c1p
1/2 ≤

(

1

|I|

∫

I

|fp(z)|q |dz|
)1/q

≤ c2(q, ε)p
1/2

for every subarc I of the unit circle with |I| ≥ 2p−1/2+ε ≥ (log p)3/2p−1/2.
3



Theorem 2.2. For every sufficiently large prime p and for every 8πp−1/8 ≤ s ≤ 2π there
is a closed subset E := Ep,s of the unit circle with linear measure |E| = s such that

1

|E|

∫

E

|fp(z)| |dz| ≥ c3 p
1/2 log log(1/s)

with an absolute constant c3 > 0.

3. Proofs

Our proof of Theorem 2.1 is a combination of Lemma 1.1 due to Gauss, a well-known di-
rect theorem of approximation due to Jackson, and the Marcinkiewicz-Zygmund inequality
[MZ-37], [Zy-77, Theorem 7.5, Chapter X]. The Marcinkiewicz-Zygmund inequality asserts
that there is a constant c4(q) depending only on q such that

c4(q)
−1 1

n

n
∑

j=1

|P (zjn)|q ≤
∫ 2π

0

|P (eit)|q dt ≤ c4(q)
1

n

n
∑

j=1

|P (zjn)|q

for any polynomial P of degree at most n− 1 and for any 1 < q < ∞, where

zn := exp

(

2πi

n

)

is the first n-th root of unity.

Proof of Theorem 2.1. It is well known that

(

1

|I|

∫

I

|fp(z)|q |dz|
)1/q

is an increasing function of q on (0,∞). So it is sufficient to prove the theorem only for
q > ε−1 > 2. Let q > 1, we will use q ≥ ε−1 > 2 only at the end of the proof. Without
loss of generality we may assume that |I| ≤ 2π/3. We introduce the truncated Fekete
polynomials fp,m by

fp,m(z) :=

p−(m+1)
∑

k=1

(

k

p

)

zk ,

with m := ⌊p1/2⌋. Then fp,m is a polynomial of degree p−(m+1). Let I = {eit : t ∈ [a, b]}
and let 3I := {eit : t ∈ [2a − b, 2b − a]} be the arc centered at the midpoint of I with
arclength 3|I|. We define the piecewise linear function LI on on [2a− b, 2a− b+ 2π] first
by

LI(t) :=































1, if t ∈ [a, b] ,

t− (2a− b)

b− a
, if t ∈ [2a− b, a] ,

(2b− a)− t

b− a
, if t ∈ [b, 2b− a] ,

0, if t ∈ [2b− a, 2a− b+ 2π] ,
4



and then we extend it as a periodic function with period 2π defined on R. By a well-
known direct theorem of approximation (see [DL-93, p. 205], for example) there is a real
trigonometric polynomial Tm of degree at most m/2 such that

(3.1) max
t∈R

|LI(t)− Tm(t)| ≤ c5
m|I| ≤

1

2

with an absolute constant c5 > 0. Without loss of generality we may assume that Tm(t) ≥ 0
for every t ∈ R, hence Tm(t) = |Qm(eit)| with an appropriate algebraic polynomial Qm of
degree at most m. Note that 1

2 ≤ |Qm(z)| ≤ 3
2 for every z = eit ∈ I. Observe that

(3.2) |fp(z) − fp,m(z)| ≤ m, z = eit, t ∈ R .

Using Lemma 1.1 and (3.2) we can deduce that

(3.3) |fp,m(zjp)| ≤ |fp(zjp)|+ |fp,m(zjp)− fp(z
j
p)| ≤ p1/2 +m, j = 1, 2, . . . , p .

Combining the inequality

|a+ b|q ≤ 2q−1(|a|q + |b|q), a, b ∈ C, q ∈ [1,∞) ,

with (3.2), and then recalling that 1
2
≤ |Qm(z)| for all z = eit ∈ I, we obtain

∫

I

|fp(z)|q |dz| ≤
∫

I

2q−1(|fp,m(z)|q + |fp(z)− fp,m(z)|q) |dz|

=2q−1

∫

I

|fp,m(z)|q |dz|+ 2q−1

∫

I

|fp(z)− fp,m(z)|q |dz|

≤2q−1

∫

I

|fp,m(z)|q |dz|+ 2q−1mq|I|

≤2q−12q
∫

I

|(fp,mQm)(z)|q |dz|+ 2q−1mq|I| .

(3.4)

Applying the Marcinkiewicz-Zygmund inequality to the polynomial

P := fp,mQm

of degree at most p− 1, then using (3.3), we obtain

∫

I

|(fp,mQm)(z)|q |dz| ≤ c4(q)
1

p

p
∑

j=1

|(fp,mQm)(zjp)|q

≤ c4(q)(p
1/2 +m)q

1

p

p
∑

j=1

|Qm(zjp)|q .

(3.5)
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Observe that (3.1) implies that

|Qm(zjp)|q ≤ 2q , zjp ∈ 3I ,

|Qm(zjp)|q ≤
(

c5
m|I|

)q

, zjp /∈ 3I ,

and there are at most
3p|I|
2π

+ 1 values of j = 1, 2, . . . , p for which zjp ∈ 3I. Hence

1

p

p
∑

j=1

|Qm(zjp)|q ≤1

p

(

2q
(

3p|I|
2π

+ 1

)

+

(

c5
m|I|

)q

p

)

≤
(

2q
(

3|I|
2π

+
1

p

)

+ (2c5)
q|I|
)

≤c6(q)|I|

(3.6)

with a constant c6(q) depending only on q, whenever
(

c5
m|I|

)q

≤ (2c5)
q|I| ,

that is, whenever
1

m
≤ 2p−1/2 ≤ 2 |I|1+1/q .

Combining (3.4), (3.5), and (3.6), and recalling that m ≤ p1/2, we conclude

1

|I|

∫

I

|fp(z)|q |dz| ≤
4q

|I|

(

∫

I

|(fp,mQm)(z)|q |dz|
)

+ 2qmq

≤ 4q

|I|c4(q)(p
1/2 +m)q

1

p

(

p
∑

j=1

|Qm(zjp)|q
)

+ 2qmq

≤4qc4(q)2
qpq/2c6(q) + 2qmq

≤c7(q)p
q/2

with a constant c7(q) depending only on q, whenever

1

m
≤ 2p−1/2 ≤ 2 |I|1+1/q .

So the theorem is proved for all q > 0 satisfying

−1/2

1 + 1/q
≤ −1

2
+ ε ,

hence for all q > ε−1 > 2, with a constant c2(q, ε) depending only on q and ε. �

To prove Theorem 2.2 we follow [Mo-80]. Let e(t) = exp(2πit) . Our first lemma is
stated as Lemma 1 and proved in [Mo-80].
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Lemma 3.1. Let χ be a primitive character (mod q), q > 1. Then

q−1
∑

m=0

χ(m)e(mα) = τ(χ) q−1 e( 12qα)(sin(πqα))T (α, χ) ,

where τ(χ) is the Gauss sum

τ(χ) =

q
∑

n=1

χ(n)e

(

n

q

)

,

and

T (α, χ) =

q
∑

a=1

χ(a) cot

(

π

(

α − a

q

))

.

Note that in the case if

χ(n) =

(

n

p

)

is the quadratic character, then Lemma 1.1 implies τ(χ) = εpp
1/2, and the content of

Lemma 3.1 is just the identity obtained by expressing the Fekete polynomial fp by the
Lagrange interpolation formula associated with the p-th root of unity. In fact, in the proof
of Theorem 2.2 we will need Lemma 3.1 above only in the case when χ is the quadratic
character.

Our second lemma is stated as Lemma 2 and proved in [Mo-80].

Lemma 3.2. Let p be a prime. For k ≥ 1 let a1, a2, . . . , ak be integers, distinct (mod p),

and put f(x) =
∏k

j=1 (x− aj). Then

∣

∣

∣

∣

∣

p
∑

n=1

(

f(n)

p

)

∣

∣

∣

∣

∣

≤ (k − 1)p1/2 .

Montgomery writes “This is a consequence of Weil’s Riemann Hypothesis for the zeta
function of a curve over a finite field: see Weil [We-45], [We-49]. The derivation of the
particular bound above is given by Burgess ([Bu-57]; §2).”
Proof of Theorem 2.2. We rely heavily on Montgomery’s beautiful line of proof in [Mo-80]
to connect the two lemmas above to the proof of the theorem. Let T (α) := T (α, χ) with

χ(h) =

(

h

p

)

.

It follows from Lemma 1.1 that |τ(χ)| = p1/2 and hence Lemma 3.1 implies that

(3.7)

∣

∣

∣

∣

fp

(

e

(

2n+ δ

2p

))∣

∣

∣

∣

≥ 1√
2
p−1/2

∣

∣

∣

∣

T

(

2n+ δ

2p

)∣

∣

∣

∣

7



for every n = 1, 2, . . . , p and δ ∈ [ 12 ,
3
2 ]. We define

(3.8) W (n) := WH(n) :=
H
∏

h=1

(

1−
(

n+ h

p

)) H
∏

h=0

(

1 +

(

n− h

p

))

,

and compute the size of the weighted sum

p
∑

n=1

T

(

2n+ δ

2p

)

W (n)

for δ ∈ [ 12 ,
3
2 ]. By multiplying the product (3.8) out, we have

W (n) = 1 +
∑

f

εf

(

f(n)

p

)

, εf ∈ {−1, 1} ,

where f runs through 22H+1 − 1 polynomials of the sort considered in Lemma 3.2. Hence,
using Lemma 3.2 we can deduce that

(3.9)

p
∑

n=1

W (n) = p+O(H22Hp1/2) .

Similarly,

(3.10)

p
∑

n=1

W (n)

(

n− a

p

)

= c(a)p+O(H22Hp1/2) ,

where c(a) = 1 if 0 ≤ a ≤ H, c(a) = 0 if H < a < p−H, and c(a) = −1 if p−H ≤ a < p.
We have

p
∑

n=1

T

(

2n+ δ

2p

)

W (n)

=

p
∑

n=1

p
∑

a=1

(

a

p

)

cot

(

π

(

2n+ δ

2p
− a

p

))

W (n)

=

p
∑

a=1

p
∑

n=1

(

n− a

p

)

W (n) cot

(

π

(

2a+ δ

2p

))

=

H
∑

a=1

+

p
∑

a=p−H

+

p−H−1
∑

a=H+1

(3.11)

for every δ ∈ [ 12 ,
3
2 ]. Using (3.10) and the facts that

cot x = − cot(π − x) =

{

x−1 +O(x), if x ∈ (0, π/2] ,

−(π − x)−1 +O(π − x), if x ∈ [π/2, π) ,
8



and
p−H−1
∑

a=H+1

cot

(

π

(

2a+ δ

2p

))

= O

(

p−H−1
∑

a=H+1

p

a

)

= O(p log p) ,

we obtain

H
∑

a=1

+

p
∑

a=p−H

+

p−H−1
∑

a=H+1

=
4p2

π

H
∑

a=1

1

2a− 1
+O(p2) +O(H22Hp1/2p log p)

=
2

π
p2 logH +O(p2) +O(H22Hp1/2p log p)

=
2

π
p2 logH +O(p2)

(3.12)

whenever δ ∈ [ 12 ,
3
2 ] and 2 ≤ H ≤ 1

8 log p. Combining (3.11) and (3.12), we conclude

(3.13)

p
∑

n=1

T

(

2n+ δ

2p

)

W (n) =
2

π
p2 logH +O(p2)

whenever δ ∈ [ 12 ,
3
2 ] and 2 ≤ H ≤ 1

8 log p.

Now let A := Ap,H be the union of all intervals

[

2n+ 1
2

2p
,
2n+ 3

2

2p

]

with W (n) := WH(n) 6= 0, n = 1, 2, . . . , p. We define B = Bp,H := {e(t) : t ∈ A}. Note
that

(3.14) W (n) ∈ {22H , 22H+1, 0} , n = 1, 2, . . . , p .

This, together with (3.9), implies that the linear measure of B is

(3.15) |B| ≤ p

22H
2π

2p
+O(Hp−1/2) = (π +O(p−1/4 log p))2−2H

whenever 2 ≤ H ≤ 1
8 log p. Also |B| ≤ 2π2−2H for all sufficiently large primes p and for

9



all integers 2 ≤ H ≤ 1
8 log p. Using (3.7) we obtain

∫

B

|fp(z)| |dz| =2π

∫

A

|fp(e(t))| dt

=
π

p

p
∑

n=1
W (n) 6=0

∫ 3/2

1/2

∣

∣

∣

∣

fp

(

e

(

2n+ δ

2p

))∣

∣

∣

∣

dδ

≥π

p

1√
2
p−1/2

p
∑

n=0
W (n) 6=0

∫ 3/2

1/2

∣

∣

∣

∣

T

(

2n+ δ

2p

)∣

∣

∣

∣

dδ

≥ π√
2
p−3/2

∫ 3/2

1/2







p
∑

n=1
W (n) 6=0

T

(

2n+ δ

2p

)






dδ .

(3.16)

Using (3.14) and (3.13) we can continue as

π√
2
p−3/2

∫ 3/2

1/2







p
∑

n=1
W (n) 6=0

T

(

2n+ δ

2p

)






dδ

≥ π√
2
p−3/22−(2H+1)

∫ 3/2

1/2







p
∑

n=1
W (n) 6=0

T

(

2n+ δ

2p

)

W (n)






dδ

≥ π√
2
p−3/22−(2H+1)

(

2

π
p2 logH +O(p2)

)

≥ π√
2
2−(2H+1)

(

2

π
p1/2 logH +O(p1/2)

)

.

(3.17)

Thus (3.16) and (3.17) imply

(3.18)

∫

B

|fp(z)| |dz| ≥
π√
2
2−(2H+1)

(

2

π
p1/2 logH +O(p1/2)

)

.

Now let 8πp−1/8 ≤ s ≤ 2π be fixed. Without loss of generality we may assume that
s ≤ 1. Let H ≥ 2 be the (only) integer such that

(3.19) s/4 < 2π 2−2H ≤ s .

Then

H ≤ log p

16 log 2
≤ 1

8
log p .

As |Bp,H | ≤ 2π 2−2H for all sufficiently large primes p and for all integers 2 ≤ H ≤ 1
8
log p,

there is a closed subset E := Ep,s of the unit circle with linear measure s containing
B := Bp,H . Then (3.18) and (3.19) imply that

1

s

∫

E

|fp(z)| |dz| ≥ c(p1/2 log log(1/s) +O(p1/2))

with an absolute constant c > 0. �
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