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Abstract. Let D and ∂D denote the open unit disk and the unit circle of the
complex plane, respectively. We denote the set of all polynomials of degree at most
n with real coefficients by Pn. We denote the set of all polynomials of degree at
most n with complex coefficients by Pc

n. We define the truncation operator Sn for
polynomials Pn ∈ Pc

n of the form

Pn(z) :=
n∑

j=0

ajz
j , aj ∈ C ,

by

(1.1) Sn(Pn)(z) :=
n∑

j=0

ãjz
j , ãj := (aj/|aj |)min{|aj |, 1}

(here 0/0 is interpreted as 1). We define the norms of the truncation operators by

‖Sn‖real∞,∂D := sup
Pn∈Pn

maxz∈∂D |Sn(Pn)(z)|
maxz∈∂D |Pn(z)|

and

‖Sn‖comp
∞,∂D

:= sup
Pn∈Pc

n

maxz∈∂D |Sn(Pn)(z)|
maxz∈∂D |Pn(z)|

.

Our main theorem in this paper establishes the right order of magnitude of the
norms of the operators Sn. This settles a question asked by S. Kwapien.

Theorem. With the notation introduced above there is an absolute constant c1 > 0
such that

c1
√
2n+ 1 ≤ ‖Sn‖real∞,∂D ≤ ‖Sn‖comp

∞,∂D
≤

√
2n+ 1 .

Moreover, an analogous result in Lp(∂D) for p ∈ [2,∞] is also established and

the case when the unit circle ∂D is replaced by the interval [−1, 1] is also studied.
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1. New Result

Let D and ∂D denote the open unit disk and the unit circle of the complex plane,
respectively. We denote the set of all polynomials of degree at most n with real
coefficients by Pn. We denote the set of all polynomials of degree at most n with
complex coefficients by Pc

n. We define the truncation operator Sn for polynomials
Pn ∈ Pc

n of the form

Pn(z) :=

n∑

j=0

ajz
j , aj ∈ C ,

by

(1.1) Sn(Pn)(z) :=
n∑

j=0

ãjz
j , ãj := (aj/|aj|)min{|aj|, 1}

(here 0/0 is interpreted as 1). In other words, we take the coefficients aj ∈ C of
a polynomial Pn of degree at most n, and we truncate them. That is, we leave
a coefficient aj unchanged if |aj | < 1, while we replace it by aj/|aj| if |aj | ≥ 1.
We form the new polynomial with the new coefficients ãj defined by (1.1), and
we denote this new polynomial by Sn(Pn). We define the norms of the truncation
operators by

‖Sn‖real∞,∂D := sup
Pn∈Pn

maxz∈∂D |Sn(Pn)(z)|
maxz∈∂D |Pn(z)|

and

‖Sn‖comp
∞,∂D := sup

Pn∈Pc
n

maxz∈∂D |Sn(Pn)(z)|
maxz∈∂D |Pn(z)|

.

Our main theorem in this paper establishes the right order of magnitude of the
norms of the operators Sn. This settles a question asked by S. Kwapien.

Theorem 1.1. With the notation introduced above there is an absolute constant
c1 > 0 such that

c1
√
2n+ 1 ≤ ‖Sn‖real∞,∂D ≤ ‖Sn‖comp

∞,∂D ≤
√
2n+ 1 .

In fact we are able to establish an Lp(∂D) analogue of this as follows. For
p ∈ (0,∞), let

‖Sn‖realp,∂D := sup
Pn∈Pn

‖Sn(Pn)‖Lp(∂D)

‖Pn‖Lp(∂D)

and

‖Sn‖comp
p,∂D := sup

Sn∈Pc
n

‖Sn(Pn)‖Lp(∂D)

‖Pn‖Lp(∂D)
.
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Theorem 1.2. With the notation introduced above there is an absolute constant
c1 > 0 such that

c1(2n+ 1)1/2−1/p ≤ ‖Sn‖realp,∂D ≤ ‖Sn‖comp
p,∂D ≤ (2n+ 1)1/2−1/p

for every p ∈ [2,∞).

Note that it remains open what is the right order of magnitude of ‖Sn‖realp,∂D and

‖Sn‖comp
p,∂D , respectively when 0 < p < 2. In particular it would be interesting to

see if ‖Sn‖comp
p,∂D ≤ c is possible for any 0 < p < 2 with an absolute constant c. We

record the following observation, due to S. Kwapien, in this direction.

Theorem 1.3. There is an absolute constant c > 0 such that

‖Sn‖real1,∂D ≥ c
√
logn .

If the unit circle ∂D is replaced by the interval [−1, 1], we get a completely
different order of magnitude of the polynomial truncation projector. In this case
the norms of the truncation operators Sn are defined in the usual way. That is, let

‖Sn‖real∞,[−1,1] := sup
Pn∈Pn

maxx∈[−1,1] |Sn(Pn)(x)|
maxx∈[−1,1] |Pn(x)|

and

‖Sn‖comp
∞,[−1,1] := sup

Pn∈Pc
n

maxx∈[−1,1] |Sn(Pn)(x)|
maxx∈[−1,1] |Pn(x)|

.

Theorem 1.4. With the notation introduced above we have

2n/2−1 ≤ ‖Sn‖real∞,[−1,1] ≤ ‖Sn‖comp
∞,[−1,1] ≤

√
2n+ 1 · 8n/2 .

2. Lemmas

To prove the lower bound of Theorem 1.1 and 1.2, we need two lemmas. Our
first one is from [LSV].

Lemma 2.1 (Lovász, Spencer, Vesztergombi). Let aj,k, j = 1, 2, . . . , n1, k =
1, 2, . . . , n2 be such that |aj,k| ≤ 1. Let also p1, p2, . . . , pn2

∈ [0, 1] . Then there are
choices

εk ∈ {−pk, 1− pk}, k = 1, 2, . . . , n2 ,

such that for all j, ∣∣∣∣∣

n2∑

k=1

εkaj,k

∣∣∣∣∣ ≤ C
√
n1

with an absolute constant C.

Our second lemma is a direct consequence of the well-known Bernstein inequality
(see Theorem 1.1 on page 97 of [DL]) and the Mean Value Theorem.
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Lemma 2.2. Suppose Qn is a polynomial of degree n (with complex coefficients),

θn := exp

(
2π

14n

)
,

zj := exp(ijθn) , j = 1, 2, . . . , 14n ,

and

|Qn(zj)| ≤ M , j = 1, 2, . . . , 14n .

Then

max
z∈∂D

|Qn(z)| ≤ 2M .

The inequalities below (see Theorem 2.6 on page 102 of [DL]) will be needed to
prove the upper bound of the Theorem.

Lemma 2.3 (Nikolskii Inequality). Let 0 < q ≤ p ≤ ∞. If Pn is a polynomial
of degree at most n with complex coefficients then

‖Pn‖Lp(∂D) ≤
(
2nr + 1

2π

)1/q−1/p

‖Pn‖Lq(∂D) ,

where r = r(q) is the smallest integer not less than q/4.

The next lemma may be found in [Ri].

Lemma 2.4 (Erdős). Suppose that z0 ∈ C and |z0| ≥ 1. Then

|Pn(z0)| ≤ |T2n(z0)|1/2 · max
x∈[−1,1]

|Pn(x)| , Pn ∈ Pc
n ,

where T2n ∈ P2n defined by

Tn(x) := cos(n arccosx) , x ∈ [−1, 1] ,

is the Chebyshev polynomial of degree 2n. As a consequence, writing

T2n(z) = 22n−1
n∏

j=1

(z2 − x2
j ) , xj ∈ (0, 1) ,

we have

max
z∈∂D

|Pn(z)| ≤ 8n/2 max
x∈[−1,1]

|Pn(x)| .



THE NORM OF THE POLYNOMIAL TRUNCATION OPERATOR 5

3. Proof of the theorem

Proof of Theorem 1.1. We apply Lemma 2.1 with n1 = 14n, n2 = n,

θn := exp(2π/(14n)) , aj,k := exp(ijkθn) ,

and p1 = p2 = · · · = pn = 1/3, and with the choices

εk ∈
{
−1

3
,
2

3

}
, k = 1, 2, . . . , n ,

coming from Lemma 2.1, we define

Qn(z) = 3
n∑

j=1

εkz
k .

Then Qn is a polynomial of degree n with each coefficient in {−1, 2}, and with the
notation

zj := exp(ijθn) , j = 1, 2, . . . , 14n ,

we have
|Qn(zj)| ≤ 3C

√
14n , j = 1, 2, . . . , 14n .

Hence Lemma 2.2 yields

(3.1) max
z∈∂D

|Qn(z)| ≤ 24C
√
n

In particular, if we denote by m the number of indices k for which εk = 2/3, then

|3m− n| = |2m− (n−m)| = |Qn(1)| ≤ 24C
√
n ,

hence

(3.2) |Sn(Qn)(1)| = |m− (n−m)| = |2m− n| ≥ n

3
− 32C

√
n .

Now (3.1) and (3.2) give the lower bound of the theorem.

To see the upper bound of the theorem, observe that Lemma 2.3 implies

max
z∈∂D

|Sn(Pn)(z)| ≤
√
2n+ 1√
2π

‖Sn(Pn)‖L2(∂D) ≤
√
2n+ 1√
2π

‖Pn‖L2(∂D)

≤
√
2n+ 1 max

z∈∂D
|Pn(z)|

for all polynomials Pn of degree at most n with complex coefficients. This proves
the upper bound of the theorem. �

Proof of Theorem 1.2. Let p ∈ [2,∞). Using (3.2) and the Nikolskii-type inequality
of Lemma 3.4, we obtain that

(3.3) ‖Sn(Qn)‖Lp(∂D) ≥ c1n
1−1/p
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with an absolute constant c1 > 0. On the other hand (3.1) implies

(3.4) ‖Qn‖Lp(∂D) ≤ c2n
1/2

with an absolute constant c2 > 0, and the lower bound of the theorem follows.

To see the upper bound of the theorem, observe that Lemma 2.3 implies

‖Sn(Pn)‖Lp(∂D) ≤
(
2n+ 1

2π

)1/2−1/p

‖Sn(Pn)‖L2(∂D)

≤
(
2n+ 1

2π

)1/2−1/p

‖Pn‖L2(∂D)

≤ (2n+ 1)1/2−1/p‖Pn‖Lp(∂D)

for all polynomials Pn of degree at most n with complex coefficients. This proves
the upper bound of the theorem. �

Proof of Theorem 1.3. Let n = 2m+2 − 2. Consider the polynomial

Pn(z) = 4z2
m+1

−1
m∏

k=0

(
1 +

z2
k

+ z−2k

2

)
.

Then

|Pn(z)| = 4

m∏

k=0

(
1 +

z2
k

+ z−2k

2

)
,

and hence ‖Pn‖L1(∂D) = 4 . Also

Pn(z)− Sn(Pn)(z) = z2
m+1

−1

(
3 +

m∑

k=0

(
z2

k

+ z−2k
))

.

Let

Rn(z) := 3 +
m∑

k=0

(
z2

k

+ z−2k
)
.

Then

‖Sn(Pn)‖L1(∂D) ≥ ‖Sn(Pn)− Pn‖L1(∂D) − ‖Pn‖L1(∂D) = ‖Rn‖L1(∂D) − 4 .

We will prove that ‖Rn‖L1(∂D) ≥ c
√
m for some absolute constant c > 0. It is easy

to see that if b, a0, a1, . . . , am are complex numbers and

F (z) = b+
m∑

k=0

ak

(
z2

k

+ z−2k
)
,

then we have

‖F‖L4(∂D) ≤ 4
√
3

(
|b|2 +

m∑

k=0

|2ak|2
)1/2

.
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Therefore
‖Rn‖L4(∂D) ≤ 4

√
3
√
9 + 4(m+ 1) .

Moreover
‖Rn‖L2(∂D) =

√
9 + 2(m+ 1) .

By Hölder’s Inquality

‖Rn‖2/3L4(∂D
‖Rn‖1/3L1(∂D) ≥ ‖Rn‖L2(∂D) .

Hence we obtain

(
4
√
3
√
9 + 4(m+ 1)

)2/3 (
‖Rn‖L1(∂D)

)1/3 ≥
√
9 + 2(m+ 1) ,

and thus ‖Rn‖L1(∂D) ≥ c
√
m. This gives

‖Sn(Pn)‖L1(∂D)

‖Pn‖L1(∂D)
≥ c′

√
m ≥ c′′

√
logn

with absolute constants c′ > 0 and c′′ > 0. �

Proof of Theorem 1.4. Let

Pn(z) :=
n∑

j=0

ajz
j , aj ∈ C ,

and

Sn(Pn)(z) :=

n∑

j=0

ãjz
j , ãj := (aj/|aj |)min{|aj |, 1} .

First we prove the upper bound. Using Lemma 1.4 we obtain

max
x∈[−1,1]

|Sn(Pn)(x)| ≤ max
z∈∂D

|Sn(Pn)(z)|

≤
(
2n+ 1

2π

)1/2

‖Sn(Pn)‖L2(∂D)

≤
(
2n+ 1

2π

)1/2

‖Pn‖L2(∂D)

≤
(
2n+ 1

2π

)1/2

· 8n/2
√
2π max

x∈[−1,1]
|Pn(x)| ,

which proves the upper bound of the theorem.

Now we turn to the lower bound. We define Qn ∈ P4n by

Qn(z) := z2n(1 − z2)n = z2n
n∑

j=0

(−1)j
(
n

j

)
z2j .
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Then

(3.5) max
x∈[−1,1]

|Qn(x)| =
(
1

4

)n

.

Also

Sn(Qn)(z) = z2n
n∑

j=0

(−1)jz2j ,

hence for every positive even n

(3.6) |Sn(Qn)(1)| = 1 .

Now we conclude the the lower bound of the theorem by combining (3.5) and
(3.6). �
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