THE NORM OF THE POLYNOMIAL TRUNCATION
OPERATOR ON THE UNIT DISK AND ON [-1,1]
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ABSTRACT. Let D and 0D denote the open unit disk and the unit circle of the
complex plane, respectively. We denote the set of all polynomials of degree at most
n with real coefficients by P,. We denote the set of all polynomials of degree at
most n with complex coefficients by P5. We define the truncation operator S, for
polynomials P, € P§ of the form

n
Pn(z) = Zajzj, a; € C,
3=0
by
(1.1) Sn(Pn)(z) =Y a@;z', @ := (a;/la;]) min{|a ], 1}
j=0

(here 0/0 is interpreted as 1). We define the norms of the truncation operators by

IIS"I r'eaéD ‘= sup max;ecpD ‘STL(PTL)(Z”
bl PneP, Max.eop |Pn(2)|
and
”Sn”corng = sup max,esp |[Sn(Pn)(2)|
oo,

P,ePg  max.egp |Pn(2)|

Our main theorem in this paper establishes the right order of magnitude of the
norms of the operators Sy. This settles a question asked by S. Kwapien.

Theorem. With the notation introduced above there is an absolute constant c1 > 0
such that
V2 1< |Sulliehp < [1SalI°00, < Van +1.

Moreover, an analogous result in L,(8D) for p € [2,00] is also established and
the case when the unit circle OD is replaced by the interval [—1,1] is also studied.
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1. NEw RESULT

Let D and D denote the open unit disk and the unit circle of the complex plane,
respectively. We denote the set of all polynomials of degree at most n with real
coefficients by P,,. We denote the set of all polynomials of degree at most n with
complex coeflicients by PS. We define the truncation operator S, for polynomials
P, € Pg of the form

n

P,(z) := Zajzj, aj € C,

by

(1.1) Su(Pa)(2) =) ;=" @ = (aj/|a;|) min{|a;|, 1}

J=0

(here 0/0 is interpreted as 1). In other words, we take the coefficients a; € C of
a polynomial P, of degree at most n, and we truncate them. That is, we leave
a coefficient a; unchanged if |a;| < 1, while we replace it by a;/|a;| if |a;| > 1.
We form the new polynomial with the new coefficients a@; defined by (1.1), and
we denote this new polynomial by S, (P,). We define the norms of the truncation
operators by

real maXzeoD |S71(Pn)(z)|

S = Ssu
[|Sn] 00,8D Pnegn max,eap | Pn(2)]

and

max Sn(Pr)(z
ISl o= sup HXec0D Sall)(2)
: P,ePe  MaX.eop | Pn(2)]

Our main theorem in this paper establishes the right order of magnitude of the
norms of the operators S,,. This settles a question asked by S. Kwapien.

Theorem 1.1. With the notation introduced above there is an absolute constant
c1 > 0 such that

V20 + 1< |[Sul|5%p < [1Sall2275h < V2n+ 1.

In fact we are able to establish an L,(0D) analogue of this as follows. For
€ (0,00), let

I1Sallpsh =
Pp€Pn HPHHLP((?D)

and
”Sn(Pn)HLp(aD)

1Snllpan =
’ S,ere |1 PullL, (o)
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Theorem 1.2. With the notation introduced above there is an absolute constant
c1 > 0 such that

c(2n+1)V271P < |8,

l —
v < |Sallyipp < (2n+1)/271P

for every p € [2,00).

Note that it remains open what is the right order of magnitude of ||Sn||;egf:, and
[Snllap s respectively when 0 < p < 2. In particular it would be interesting to
see if [|S, ][,/ < c is possible for any 0 < p < 2 with an absolute constant c. We
record the following observation, due to S. Kwapien, in this direction.

Theorem 1.3. There is an absolute constant ¢ > 0 such that

I18alli5D > c/logn.

If the unit circle 9D is replaced by the interval [—1,1], we get a completely
different order of magnitude of the polynomial truncation projector. In this case
the norms of the truncation operators S,, are defined in the usual way. That is, let

max,e(—1,1] |Sn(Pn) ()]
max,e[—1,1] | Pn(2)]

||Sn|‘€§(,l[l—1,1] = sup
P,€P

n

and

comp . maxxe[*lwl] |S"(Pn)(x)|
HSnHoo,[—l,l] = sup
P.eP;  MaXge(-1,1] [Po(z)|

Theorem 1.4. With the notation introduced above we have

2"/l <8, ety < [Snllse Ty < V2n+1 g2

2. LEMMAS

To prove the lower bound of Theorem 1.1 and 1.2, we need two lemmas. Our
first one is from [LSV].

Lemma 2.1 (Lovasz, Spencer, Vesztergombi). Let a;,j=1,2,... ,n1,k =
1,2,...,n2 be such that |a; k| < 1. Let also p1,p2,...,Pn, € [0,1]. Then there are
choices

EkE{—pk,l—pk}, k=1,2,...,n9,

such that for all j,

n2
E erajk| < Cyna
k=1

with an absolute constant C'.

Our second lemma is a direct consequence of the well-known Bernstein inequality
(see Theorem 1.1 on page 97 of [DL]) and the Mean Value Theorem.
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Lemma 2.2. Suppose Q,, is a polynomial of degree n (with complex coefficients),

27
0, := exp <m) ,

zj = exp(ijby) , ji=1,2,...,14n,

and
Qu(z))| <M,  j=1,2,...,14n.

Then

< .
max [Qn(2)] < 2M

The inequalities below (see Theorem 2.6 on page 102 of [DL]) will be needed to
prove the upper bound of the Theorem.

Lemma 2.3 (Nikolskii Inequality). Let 0 < ¢ < p < oo. If P, is a polynomial
of degree at most n with complex coefficients then

2nr + 1 Va=1/p
I Prllz,op) < ( 5 ) | Pullz,op) »

where 1 = r(q) is the smallest integer not less than q/4.
The next lemma may be found in [Ri].
Lemma 2.4 (Erdds). Suppose that zg € C and |z9| > 1. Then

| Pa(20)| < [Ton(20)|"/* - L [Pa(@)],  PoePy,

where Ty, € Pa, defined by
T, (x) := cos(narccosz) , x€[-1,1],

is the Chebyshev polynomial of degree 2n. As a consequence, writing
Ton(z) =2 [ (2*=23), 2, €(0,1),
j=1

we have

< ’ﬂ/2 .
max [Py (2)] < 8 Jhax [P ()]
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3. PROOF OF THE THEOREM

Proof of Theorem 1.1. We apply Lemma 2.1 with n; = 14n,ns = n,

0 := exp(27/(14n)), a; = exp(ijko,) ,
and p; = py = -+ = p, = 1/3, and with the choices
12
ek € {—g,g}, k=1,2.... .n,

coming from Lemma 2.1, we define
Qn(z) = 3Zakzk .
j=1

Then @, is a polynomial of degree n with each coefficient in {—1, 2}, and with the
notation
zj = exp(ijbn), j=1,2,...,14n,

we have

|Qn(2)] <3CV14n,  j=1,2,...,14n.

Hence Lemma 2.2 yields

(3.1) max |Q,(2)] < 24C/n

2€0D
In particular, if we denote by m the number of indices k for which ¢ = 2/3, then
[3m —n| = [2m — (n —m)| = |Qu(1)] < 240V,
hence

(3.2) 154(@u)(V)] = [m = (n = m)| = |2m —n| > T — 320V

Now (3.1) and (3.2) give the lower bound of the theorem.

To see the upper bound of the theorem, observe that Lemma 2.3 implies

V2n+1 V2n+1
;ga)lgl (Pn)(2)] o [1Sn(Pu)ll 22 (o0) NS |1 Pollza(op)

<V2n+1 max | P (2)]
ze

for all polynomials P,, of degree at most n with complex coefficients. This proves
the upper bound of the theorem. [

Proof of Theorem 1.2. Let p € [2,00). Using (3.2) and the Nikolskii-type inequality
of Lemma 3.4, we obtain that

(3:3) ”Sn(Qn)HLp(aD) > enl /P
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with an absolute constant ¢; > 0. On the other hand (3.1) implies

(3.4) 1Qullz,op) < con'/?
with an absolute constant ¢ > 0, and the lower bound of the theorem follows.

To see the upper bound of the theorem, observe that Lemma 2.3 implies

1/2—1/p
2n+1
15, (P leyom < (25t ) ISu(P) o)

on +1\ /2P
<(B2) T iRdsen)

< (2n+ )22 Py 1, op)

for all polynomials P,, of degree at most n with complex coefficients. This proves
the upper bound of the theorem. [

Proof of Theorem 1.3. Let n = 2™*2 — 2. Consider the polynomial

M sz + 2’21C
Pn _ 4 27n+171 1 Z Te '
(2) = 42 [I{1+—
k=0
Then

M sz —l—z’zk
Pa() =4 ]] <1+ f> :
k=0

and hence || Pz, (9p) = 4. Also

Let

Then

150 (Pu)ll Ly @Dy 2 (150 (Pn) = PallLyop) = [1PallLyop) = [1Bnll L, op) —4-

We will prove that || Rz, 9p) > ¢v/m for some absolute constant ¢ > 0. It is easy
to see that if b, ag, a1, ..., a,, are complex numbers and

F(z)=b+ iak (z2k + z_2k> ;
k=0

then we have

m 1/2
1FlLaopy < V3 (Ibl2 + |2ak|2> :
k=0
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Therefore

|RnllLyop) < V3V/9+4(m+1).
|Rullzo00) = V9 +2(m +1).

Moreover

By Holder’s Inquality

2/3 1/3
1Rl 00 | Ballf S op) = 1Rl Lacon) -

Hence we obtain

(\4/5\/9 +4(m + 1))2/3 (||1‘3n||L1(aD))l/3 >/9+2(m+1),

and thus || R,|/z,ap) > cy/m. This gives
S”l P”l
” ( )HLl(aD) 20/\/%20//\/@
[Pl oD

with absolute constants ¢/ >0 and ¢’ > 0. O

Proof of Theorem 1.4. Let

and

Su(Pa)(z) =) a2’ @ = (a;/laz]) min{la;, 1}

Jj=0

First we prove the upper bound. Using Lemma 1.4 we obtain

<
men[l—affl] | (Pp) ()] < znelgﬁ [0 (Pr) (2)]

< <2n—|—1

2T

2n+1
2

1/2
) 15w () acom)

<

1/2
) 1 Pallacon)

on 41\ /2
< ( nt ) -8"/2\/2r max |P,(z)],
27 ze[—1,1]

which proves the upper bound of the theorem.

Now we turn to the lower bound. We define @,, € Py, by

Qn(z) == 2""(1=2")" = Z?nzn: (—1y <n> e

i=0 J
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Then

z€[—1,1]

(35) max 1.1 = ()

Also .
Sn(Qn)(2) = 22" (_1)j22j )
=0

J

hence for every positive even n

(3.6) [Sn(@n)(1)] = 1.

Now we conclude the the lower bound of the theorem by combining (3.5) and
(3.6). O
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