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Abstract. The notion of the bounded approximation property
= BAP (resp. the uniform approximation property = UAP ) of a
pair [Banach space, its subspace] is used to prove that if X is a
L∞−space, Y a subspace with the BAP (resp. UAP ), then the
quotient X/Y has the BAP (resp. UAP ). If Q : X → Z is a sur-
jection, X is a L1−space and Z is a Lp−space (1 ≤ p ≤ ∞) then
kerQ has the UAP . A complemented subspace of a weakly sequen-
tially complete Banach lattice has the separable complementation
property = SCP. A criterion for a space with GL-l.u.st. to have
the SCP is given. Spaces which are quotients of weakly sequen-
tially complete lattices and are uncomplemented in their second
duals are studied. Examples are given of spaces with the SCP
which have subspaces that fail the SCP. The results are applied
to spaces of measures on a compact Abelian group orthogonal to
a fixed Sidon set and to Sobolev spaces of functions of bounded
variation on Rn.

To the memory of Lior Tzafriri

Introduction and notation

Typical problems studied in this paper are the following: Suppose
that Q : X → Z is a surjection acting between Banach spaces (resp.
J : Y → X is an isomorphic embedding). Assume that X is a nice
space, for instance a Banach lattice. Having some information on Z
(resp. on Y ) we would like to obtain some information on ker Q (resp.
on the quotient X/Y ).

In Section 1 we introduce the notion of the bounded approximation
property (resp. the uniform approximation property) for pairs consist-
ing of a Banach space and a fixed subspace. As an easy application we
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obtain the existence of some new phenomena concerning approxima-
tion properties of some subspaces of c0, l1 and S1 (cf. Corollaries 1.13
and 1.14).

In Section 2, influenced by a construction of Lusky [Lu], we apply
that notion to show that a quotient of a L∞−space has the bounded
approximation property = BAP (resp. the uniform approximation
property = UAP ) provided that the kernel of the quotient map has
the same property. By duality we obtain a corresponding criterion for
subspaces of L1−spaces. As a corollary we get that if Q is a surjection
from a L1−space onto a Lp−space (1 ≤ p ≤ ∞) then ker Q has the
UAP . On the other hand it follows from a result of [J2] that ker Q fails
GL-l.u.st.

In Section 3 we discuss an invariant of non-separable Banach spaces -
the separable complementation property = SCP. A Banach space X has
the SCP provided that every separable subspace of X is contained in
a separable subspace which is complemented in X. The property goes
back to [AL], who proved that weakly compactly generated = WCG
spaces have the SCP. It was observed in [GS] that a weakly sequen-
tially complete Banach lattice has the SCP. We prove that a weakly
sequentially complete complemented subspace of a Banach lattice has
the SCP. As a corollary we get that a dual Banach space of finite cotype
with GL-l.u.st. has the SCP.

In Section 4 we isolate an isomorphic invariant of Banach spaces
called property (k). It appears implicitly in [J2] and it is a modifi-
cation of an invariant invented by S. Kwapień (cf. [KP, pp.142-144]).
There is some analogy between property (k) and Grothendieck’s char-
acterization [Gr] of the Dunford - Pettis property. Combining property
(k) with the lattice variant of the factorization theorem for weakly
compact operators we give a criterion for kernels of quotient maps of
Banach lattices to be uncomplemented in their second duals. At the
end of the section we give an example which shows that the SCP need
not be preserved when passing to subspaces. This answers a question
posed in [PlY]. More examples of that sort are presented in Section 5.

In Section 5 we examine two important examples of spaces failing
the SCP: the space of all Borel measures on a compact Abelian group
orthogonal to an infinite Sidon set, and the Sobolev space of functions
of bounded variation on an open subset of Rn.

In Section 6 we mention open problems that are suggested by this
research.

Terminology and notation. We employ the standard terminology
and notation used in Banach space theory [LT, JL]. BX denotes the
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open unit ball and SX the unit sphere of a Banach space X. By cl A we
denote the norm closure of a subset A of a normed space X. A (short)
exact sequence of Banach spaces is a diagram

0 → Y
J→ X

Q→ Z → 0,

where X, Y, Z are Banach spaces, J : Y → X is an isomorphic em-
bedding, Q : X → Z is a linear surjection, and J(Y ) = ker Q. By
Lp[0, 1], 1 ≤ p ≤ ∞, we denote the usual Lp−space on the interval
[0, 1] with respect to the normalized Lebesgue measure.

1. The bounded approximation property of pairs

Definition 1.1. Let X be a Banach space, let Y ⊆ X be a closed linear
subspace, let λ ≥ 1. The pair (X, Y ) is said to have the λ − BAP if
for each λ′ > λ and each subspace F ⊆ X with dim F < ∞, there
is a finite rank operator u : X → X such that ||u|| < λ′, u(x) = x
for x ∈ F and u(Y ) ⊆ Y . If moreover for each λ′ > λ there is a
function n → φλ′(n) for n ∈ N such that in addition u can be chosen
so that dim u(X) < φλ′(dim F ) then the pair (X,Y ) is said to have the
λ−UAP . If Y = X we say that X has the λ−BAP (resp. λ−UAP ).

X has the BAP (resp. UAP ) iff X has the λ−BAP (resp. λ−UAP )
for some λ ≥ 1.

We begin with some simple consequences of Definition 1.1.

Corollary 1.2. If a pair (X,Y) has the λ−BAP (resp. λ−UAP ) then
X, Y and the quotient space X/Y have the λ−BAP (resp. λ−UAP ).

Proof. Let q : X → X/Y be the quotient map. Pick a finite-

dimensional subspace F̃ ⊂ X/Y . Then there is a subspace F ⊂ X such

that dim F = dim F̃ and q(F ) = F̃ . Since (X, Y ) has the λ−BAP , for
every λ′ > λ there is a finite rank operator u : X → X satisfying the
requirement of Definition 1.1. In particular u(Y ) ⊆ Y which implies
the existence of a unique ũ : X/Y → X/Y such that qu = ũq. Clearly

ũ has finite rank, ‖ũ‖ ≤ ‖u‖ < λ′ and ũ(x̃) = x̃ for x̃ ∈ F̃ . The
argument for the λ−UAP is similar. ¤
Corollary 1.3. Let X be a Banach space, q : X → Z a quotient map,
and let dim ker q < ∞. Then the assumption that X has the λ−BAP
(resp. λ−UAP ) implies that Z has the same property.

Proof. If a subspace F ⊆ X is finite dimensional then the subspace
E := ker q + F is also finite dimensional. Thus the assumption on X
implies that for each λ′ > λ there is a finite rank operator u : X → X
with ‖u‖ < λ′ which is the identity on E. In particular u(ker q) = ker q.
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Thus the pair (X, ker q) has the λ−BAP . Now we apply Corollary 1.2.
The argument for the λ−UAP is similar. ¤
Corollary 1.4. Let X be a Banach space, Y a subspace of finite codi-
mension.

(i) If the dual space X∗ has the λ−BAP then Y has the λ−BAP .
(ii) If X has the λ−UAP then Y has the λ−UAP .

Proof. (i). Let Y ⊥ = {x∗ ∈ X∗ : x∗(y) = 0 for y ∈ Y }. Clearly,
dim Y ⊥ = dim X/Y < ∞. The dual space Y ∗ is naturally isometric
to X∗/Y ⊥. Thus, by Corollary 1.3 the space Y ∗ has the λ−BAP .
This yields that Y has the λ−BAP (see, e.g., [C, Proposition 3.5 and
Theorem 3.3]).

(ii). X has the λ−UAP if and only if X∗ has the λ−UAP [H, M].
Thus the proof of (ii) reduces to the previous case. ¤
Lemma 1.5. Let Y be a closed linear subspace of the Banach space X
and let λ < ∞. Suppose that for every finite dimensional subspace E
of X and every ε > 0 there is a finite rank operator T : X → X such
that T (Y ) ⊆ Y , ‖T‖ ≤ λ and ‖Tx − x‖ ≤ ε‖x‖ for x ∈ E. Then the
pair (X, Y ) has the λ−BAP .

Proof. Fix numbers ε > 0, λ′ > λ and a subspace E ⊂ X with dim E <
∞. Pick a bounded linear projection P : X → X such that P (X) = E
and P (Y ) ⊆ Y . Let α > 0 be a small number to be specified later.
Choose a finite rank operator T : X → X such that T (Y ) ⊆ Y , ‖T‖ ≤
λ and ‖Tx−x‖ ≤ α‖x‖ for x ∈ E. Put S = T +P−TP = T +(I−T )P .
Clearly, S(Y ) ⊆ Y , Sx = x for x ∈ E and rank S ≤ rank T + rank P <
∞. Furthermore, one has ‖S‖ ≤ ‖T‖ + α‖P‖. Thus we will get the
estimate ‖S‖ < λ′ if α has been chosen so that α‖P‖ < λ′ − λ. ¤
Proposition 1.6. Let X be a Banach space and λ < ∞. Then the
following are equivalent.

(i) The dual space X∗ has the λ−BAP .
(ii) For every finite codimensional subspace Y ⊆ X, the pair

(X, Y ) has the λ−BAP .
(iii) For every finite codimensional subspace Y ′ ⊆ X, there is a

finite codimensional subspace Y ⊆ Y ′ so that the pair (X, Y )
has the λ−BAP .

Proof. Our proof of (i) =⇒ (ii) uses Lemma 1.5 and the full force
of Proposition 3.5 in [C], which yields that if X∗ has the λ−BAP
then X has the so called λ−duality bounded approximation property.
The latter property means that for each ε > 0 and each pair of finite
dimensional subspaces E of X and F of X∗, there is a finite rank
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operator T on X with ‖T‖ ≤ λ, ‖Tx − x‖ ≤ ε‖x‖, for all x ∈ E and
‖T ∗x∗ − x∗‖ ≤ ε‖x∗‖, for all x∗ ∈ F .

Let λ′ > λ, ε > 0 and α > 0 be fixed (the number α will be specified
later on). We also fix a subspace Y ⊆ X of finite codimension and let
F = Y ⊥. Since F is a weak∗ closed subspace of X, there is a weak∗

continuous projection Q = P ∗ from X∗ onto F .
Since X has the λ−duality bounded approximation property, we can

choose a finite rank operator T on X with ‖T‖ ≤ λ, ‖Tx−x‖ ≤ α‖x‖,
for all x ∈ E and ‖T ∗x∗ − x∗‖ ≤ α‖x∗‖, for all x∗ ∈ F . Put U =
T + P − PT = T + P (I − T ). Observe that U : X → X, rank U ≤
rank T +rank P < ∞, and U∗ = T ∗+(I∗−T ∗)Q. Thus for every x∗ ∈ F
we have Qx∗ = x∗ and hence U∗x∗ = T ∗x∗ + (I∗ − T ∗)Qx∗ = x∗. It
follows that for y ∈ Y we have Uy ∈ Y , because for every x∗ ∈ F one
has x∗(Uy) = (U∗x∗)y = x∗y = 0.

Clearly, for each x∗ ∈ X∗ one has ‖(I∗ − T ∗)P ∗x∗‖ ≤ α‖Q‖‖x∗‖,
which implies that ‖U − T‖ = ‖P (I − T )‖ = ‖(I∗ − T ∗)P ∗‖ ≤ α‖Q‖.
This yields ‖U‖ ≤ λ′, if α has been chosen so that α‖Q‖ ≤ λ′ − λ.

Using the identity x−Ux = x−Tx−P (x−Tx) = (I −P )(x−Tx)
which holds true for each x ∈ X, we obtain ‖x−Ux‖ ≤ α(1+‖Q‖)‖x‖
for every x ∈ E. If α is chosen so that α(1 + ‖Q‖) < ε, then we obtain
the estimate ‖x− Ux‖ ≤ ε‖x‖ for every x ∈ E.

Now, thanks to Lemma 1.5 we can conclude that the pair (X, Y ) has
the λ′−BAP for every λ′ > λ. By Definition 1.1 this yields that the
pair (X, Y ) has the λ−BAP .

XXXZ
The implication (ii) =⇒ (iii) is trivial.
To prove (iii) =⇒ (i), let F ′ ⊂ X∗, dim F ′ < ∞ and let ε > 0. By (iii)

we can choose a finite codimensional subspace Y ⊆ (F ′)⊥ := {x ∈ X :
f(x) = 0 for f ∈ F ′} so that the pair (X, Y ) has the λ−BAP . Let
F = Y ⊥ := {f ∈ X∗ : f(Y ) = {0}}. Clearly, dim F < ∞ and F ⊇ F ′.
Choose a finite dimensional subspace E ⊂ X such that E ′ ∩ F = {0}.
Since (X, Y ) has the λ−BAP , there is an operator u : X → X such
that u(Y ) ⊆ Y , ue = e for e ∈ E, rank u < ∞ and ‖u‖ < λ + ε.
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We claim that the operator u∗ : X∗ → X∗ satisfies the condition
u∗f = f for f ∈ F . For, observe that if f ∈ F , then u∗f ∈ Y ⊥, because
for each y ∈ Y we have (u∗f)y = f(uy) = 0. Since dim F < ∞, F
is weak∗ closed in X∗ and hence Y ⊥ = (F⊥)⊥ = F by the bipolar
theorem. It follows that g := u∗f − f ∈ F . Observe that g ∈ E⊥

because for e ∈ E we have ge = (u∗f)e − fe = f(ue) − fe = 0.
It follows that g ∈ F ∩ E⊥ = {0} and hence u∗f − f = g = 0. Since
‖u∗‖ = ‖u‖ < λ+ε, this completes the proof that X∗ has the λ−BAP .

¤

Remark 1.7. If X is a Banach space with the λ−UAP and Y ⊆ X is
a closed subspace of finite codimension, then the pair (X, Y ) has the
λ−UAP . Indeed, since X∗ has the λ−UAP [H, M], the proof can just
follow the lines of that of Proposition 1.6 (with appropriate estimates
of the ranks of finite rank approximations used in the process).

Proposition 1.8. Let X be a Banach space and let Y ⊆ X be a closed
subspace such that dim X/Y = n < ∞ and Y has the λ−BAP (resp.
Y has the λ−UAP ). Then the pair (X,Y ) has the 3λ−BAP (resp.
3λ−UAP ).

Proof. Let ε > 0. Choose a subspace E of X to (1 + ε)-norm Y ⊥ so
that dimE ≤ f(n, ε). Define Q : E ⊕1 Y → X by

Q(e, y) = e + y.

Claim: Q is a 3(1 + ε)-quotient map.
To prove the claim observe first that the quotient map R : X → X/Y

has the property that R(BX) ⊆ (1 + ε)R(BE). For, if that were false
then there would exist an x ∈ BX such that Rx /∈ (1 + ε)R(BE). Let
η ∈ (X/Y )∗ = Y ⊥ be a separating linear functional with η(Rx) = 1.
Then we would obtain that 1 > (1 + ε) sup{|η(Re)| : e ∈ BE} ≥ 1,
because E (1 + ε)-norms Y ⊥. This contradiction proves the inclusion.

Now, given any x ∈ X, we can find an e ∈ E such that Re = Rx and
‖e‖ ≤ (1+ε)‖x‖. Observe that x−e ∈ Y , because R(x−e) = Rx−Re =
0. Letting y = x−e, we have y ∈ Y and ‖y‖ ≤ ‖x‖+‖e‖ ≤ (2+ε)‖x‖.
Since Q(e, y) = e + (x− e) = x and ‖e‖+ ‖y‖ ≤ (3 + 2ε)‖x‖, we have
proved the claim.

Now suppose G ⊆ X is finite dimensional and G ⊇ E, where E is
from the claim. We may and do assume that G ∩ Y 6= {0}. Take a
finite rank T : Y → Y with ‖T‖ ≤ λ + ε and Ty = y for y ∈ G ∩ Y .
Define S on E ⊕1 Y → E ⊕1 Y by S(e, y) = (e, Ty). Then ‖S‖ = ‖T‖,
S is a projection if T is, and S(e, y) = (e, y) if e ∈ E and y ∈ G ∩ Y .
Since G ⊇ E, S is the identity on the kernel of Q and hence S induces
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an operator S̃ : X → X defined by S̃x = e+Ty whenever Q(e, y) = x.

Then ‖S̃‖ ≤ 3(1 + ε)(λ + ε) and S̃ is the identity on G.

Tracing the construction of S̃ we infer that if Y has the UAP then
(X,Y ) has the 3λ-UAP .XXX ¤

Remark 1.9. Clearly S̃ is a projection if T is and is weak∗ continuous
if X is a dual space, Y is weak∗ closed, and T is weak∗ continuous.

If T1 : Y → Y is a finite rank operator commuting with T then S̃1

commutes with S̃ where S̃1 : X → X is constructed for T1 in the same
way as S̃ for T .

Remark 1.10. We do not know whether in the statement of Proposition
1.8 one can replace 3λ by a smaller quantity. However, the number
3 which appears in the claim made in the proof of that proposition
cannot be replaced by a smaller one, even in the simple case where
Y = c0 ⊂ c = X and E ⊂ X is any subspace of finite dimension. We
omit the easy verification of the latter fact.

Corollary 1.11. Let X be a Banach space and λ < ∞. If every finite
codimensional subspace Y ′ ⊆ X contains a finite codimensional sub-
space Y ⊆ Y ′ such that Y has the λ−BAP then X∗ has the 3λ−BAP .

If X is a Banach space and Y has the λ−BAP for every finite codi-
mensional subspace Y ⊆ X, then X∗ has the 3λ−BAP .

Proof. This follows from Proposition 1.6, because every pair (X, Y ) has
the 3λ−BAP by Proposition 1.8. ¤
Remark 1.12. If X is a Banach space with the BAP such that X∗

fails the BAP , then by Corollary 1.11 for every λ < ∞ there is a
finite codimensional subspace Yλ ⊂ X which fails the λ−BAP . This
observation shows that one cannot replace X∗ by X in the statement of
Corollary 1.4 (i). Also it leads to a somewhat simpler proof of the main
result of [FJ]. In fact, by applying Corollary 1.4 (i) to some specific
Banach spaces X we construct here some new examples with rather
surprising properties.

Corollary 1.13. Each of the spaces c0 and l1 has a subspace Y which
has the approximation property but Y fails the BAP .

Proof. In the case of c0 we use an old result of G. Schechtman and the
second author of the present paper (see [JO], Corollary JS), who proved
that there is a subspace X of the space c0 which has the BAP while
X∗ fails the BAP . By Corollary 1.11, for each positive integer n we
choose a finite codimensional subspace of X which fails the n−BAP .
Obviously, all the Xn’s have the approximation property. Hence if Y
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is the c0−sum of the sequence (Xn) then Y is isometric to a subspace
of c0 and has the approximation property but Y fails the BAP .

Similarly, in the case of l1 we start with a subspace X of l1 which
fails the approximation property found in [Sz1]. As shown in [J1], from
the existence of such a space it follows that if we let Z be the l1−sum
of a dense sequence (Xn) of finite dimensional subspaces of X, then Z∗

fails the BAP and yet Z has the approximation property. We conclude
as in the previous paragraph (now Y will be the l1−sum of a suitable
sequence of finite codimensional subspaces of Z). ¤

By the result of A. Szankowski [Sz2] the space B(H) fails the BAP .
Since B(H) is the dual space of the trace class S1, using again Corollary
1.11 we obtain

Corollary 1.14. For each λ < ∞ the trace class S1 contains a finite
codimensional subspace Yλ such that each finite codimensional subspace
Y ⊆ Yλ fails the λ−BAP .

Every finite codimensional subspace of the trace class S1 contains for
each λ < ∞ a finite codimensional subspace Yλ such that Yλ fails the
λ−BAP .

Of course, S1 has the 1−BAP and it is the simplest non commutative
L1-space. On the other hand, Corollary 1.4 implies that every finite
codimensional subspace of a commutative L1-space has the 1−BAP .

Remark 1.15. One may ask whether the analogue of Proposition 1.8
for quotient spaces is true. Namely, let Y be a Banach space with the
λ−BAP . Consider those Banach spaces X for which there is a quotient
map from X onto Y whose kernel is finite dimensional. When is it true
that there exists µ < ∞ such that X has the µ−BAP for all those X?
The answer is that if Y ∗ fails the BAP then no such µ exists, while if
Y ∗ has the µ−BAP then X has the 3µ−BAP for all those X. The
3µ−estimate follows from Proposition 1.8, while the nonexistence can
be demonstrated using the construction applied in the proof of that
proposition.

2. Bounded and uniform approximation properties of
quotients of L∞−spaces (resp. subspaces of L1−spaces).

The main result of this section is

Theorem 2.1. Let

0 → Y
J→ X

Q→ Z → 0

be an exact sequence of Banach spaces. Then
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(a) If X is a L∞−space and Y has the BAP (resp. Y has the
UAP ) then Z has the BAP (resp. Z has the UAP ).

(b) If X is an L1−space and the dual space Z∗ has the BAP (resp.
Z has the UAP ) then Y ∗ and Y have the BAP (resp. Y has
the UAP ).

(c) Let 1 ≤ p ≤ ∞. If X is a L∞−space (resp. X is a L1−space)
and Y is a Lp−space (resp. Z is a Lp−space) then Z has the
UAP (resp. Y has the UAP ).

Proof. (a) By equipping X with an equivalent norm [KP, Lemma 1.1]
we can assume that J is an isometric embedding and Q is a quotient
map. Suppose Y has the λ−BAP (resp. λ−UAP ). By Corollary 1.2,
it suffices to establish

(?) (X, Y ) has the µ−BAP (resp. µ−UAP );

( µ ≥ 1 depends only on λ and X).
To verify (?) fix a finite-dimensional subspace F ⊆ X. Put Y1 = Y +

F . Clearly Y1 is a closed subspace of X and dim Y1/Y ≤ dim F < ∞.
By Proposition 1.8, for every λ′ > λ there exists a finite rank operator
u : Y1 → Y1 such that

‖u‖ < 3λ′, u(x) = x for x ∈ F , u(Y ) ⊆ Y.

Moreover, in the case of UAP , dim u(Y1) < φ3λ′(dim F ). XXX
Since X is a L∞−space, there are c > 1 and a function f : N → N

depending only on X such that for each finite-dimensional subspace F1

of X there exists a subspace E ⊆ X such that

E ⊇ F1,(2.1)

dim E < f(dim F1),(2.2)

the Banach-Mazur distance d(E, `dim E
∞ ) ≤ c.(2.3)

Now specify F1 := u(Y1). By (2.1), we can regard u as an operator
with values in E. Hence, by (2.3), u admits an extension ũ : X → E
with ‖ũ‖ ≤ c‖u‖ < 3cλ′ because `dim E

∞ is a 1-injective space. Clearly
ũ(Y ) = u(Y ) ⊆ Y because ũ extends u. Clearly ũ is of finite rank
because ũ(X) ⊆ E. By (2.2) it follows that, in the case of the UAP ,
dim E is controlled by dim F because in that case

dim E ≤ f(dim u(Y )) ≤ f(φ3λ′(dim F )),

where φ3λ′(.) is the “uniformity function” of (Y + F, Y ) for 3λ′. XXX
Two changes to be made: the noindent command and the right

parenthesis after dim F.
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(b) If X is a L1−space then X∗ is a L∞−space [JL, p.59]. The
assumption that Z∗ has BAP allows us to apply the already established
case (a) to the dual diagram

0 → Z∗ Q∗→ X∗ J∗→ Y ∗ → 0

to conclude that Y ∗ has the BAP . Then by [C, Proposition 3.5] we
infer that Y has the BAP .

In the case of the UAP it is enough to assume that Z has the UAP .
We use the result of Heinrich [H, M] that a Banach space has the UAP
if and only if its dual has the UAP .

(c) By [PR], every Lp(µ) space has the UAP . By [LR], if 1 < p < ∞
then every Lp−space is complemented in some Lp(µ) and if either p = 1
or p = ∞ then some dual of every Lp−space is complemented in some
Lp(µ). By [H] if the dual of a space has the UAP then the space itself
has the UAP . Thus every Lp−space has the UAP for 1 ≤ p ≤ ∞. The
desired conclusion follows now from assertions (a) and (b). ¤

Remark 2.2. Recently Szankowski [Sz3] proved that there exists a sub-
space X of L∞[0, 1] (resp. C[0, 1]) which fails the approximation prop-
erty while L∞[0, 1]/X has the 1−BAP (resp. C[0, 1]/X has a basis).
The result extends to Lp[0, 1] for p > 2, while for 1 ≤ p < 2 the dual
result holds

Lusky [Lu, Corollary 3 (b)] proved

(L) If 0 → X
J→ Y

Q→ Z → 0 is an exact sequence of Banach spaces
such that Y is a separable L1 space and Z is not reflexive and has a
basis then X has a basis.

Our next result is a consequence of (L). It gives additional infor-
mation for non-separable spaces. For the terminology and properties
of abstract L− and M−spaces we refer to [K1, K2] and [LT, Vol II].
It holds for abstract L− and M−spaces over both real and complex
scalars.

Proposition 2.3. Let 0 → X
J→ Y

Q→ Z → 0 be an exact sequence of
Banach spaces. Assume that Y is isomorphic to an abstract L−space
and Z is isomorphic to an abstract M−space with unit. Then every
separable subspace of X is contained in a separable subspace of X with
a basis.

Proof. We use the following well known facts.

(j) Every separable subspace of an abstract L−space is contained
in a separable subspace which is an abstract L−space.
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(jj) Every separable subspace of an abstract M−space with a
unit is contained in a separable subspace which is an abstract
M−space with the unit.

(jjj) There is an a < ∞ such that if F is a separable subspace
of Z then there is a separable subspace E of Y such that
cl aQ(BE) ⊃ BF .

((jjj) is a simple consequence of the proof of the Open Mapping Prin-
ciple.)

Let E be an infinite-dimensional separable subspace of X. Choose
y0 ∈ Y so that Qy0 corresponds via an isomorphism to the unit of
an abstract M−space isomorphic to Z. Using (j) - (jjj) we define
inductively increasing sequences (En)∞n=1 and (Yn)∞n=1 of subspaces of
Y , and (Fn)∞n=1 and (Zn)∞n=1 of separable subspaces of Z such that

E1 ⊃ J(E) ∪ {y0};(2.4)

Yn is isomorphic to a separable abstract L−space;(2.5)

Zn is isomorphic to a separable abstract M−space;(2.6)

En ⊂ Yn; Fn ⊂ Zn; cl Q(Yn) = Fn;(2.7)

cl aQ(BEn+1) ⊃ BZn .(2.8)

The isomorphisms in (2.5) (resp. in (2.6)) are restrictions of the same
isomorphism of Y onto an abstract L−space (resp. of Z onto an ab-
stract M−space).

Put

Y∞ := cl
∞⋃

n=1

Yn; Z∞ := cl
∞⋃

n=1

Zn; X0 := J−1(J(X) ∩ Y∞).

By (2.5) and the comment after (2.4)-(2.8), Y∞ is isomorphic to an
abstract L−space. By (2.6) and the comment, Z∞ is isomorphic to an
abstract M−space which has the unit because, by (2.4), Q(y0) ∈ Z∞.
Since the Yn’s and the Zn’s are separable so are Y∞, Z∞ and X0. It
follows from (2.7) and (2.8) that

aQBY∞ ⊃
∞⋃

n=1

aQBYn ⊃
∞⋃

n=1

aQBEn ⊃
∞⋃

n=2

BZn−1 =
∞⋃

n=1

BZn .

Since the sequence (BZn)∞n=1 is increasing, cl
⋃∞

n=1 BZn = cl BZ∞ . Hence
aQBY∞ is norm dense in BZ∞ . Thus the restriction Q|Y∞ maps Y∞ onto
Z∞. Therefore ker Q|Y∞ = ker Q ∩ Y∞ = J(X) ∩ Y∞ = J(X0).

Now we consider the exact sequence

0 → X0
J |X0→ Y∞

Q|Y∞→ Z∞ → 0.
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Y∞ is isomorphic to a separable abstract L−space and thus by [K1]
is isomorphic to a separable L1(µ). The space Z∞ is isomorphic to
a C(K) space on a compact metric K because Z∞ is isomorphic to
a separable abstract M−space with unit [K2]. Obviously Z∞, being
infinite-dimensional, is non-reflexive. By a result of Vakher [V, MP],
for every compact metric space K the space C(K) has a basis. Thus,
by [Lu], X0 has a basis. Obviously X0 contains E. ¤

3. Banach spaces with the separable complementation
property and complemented subspaces of Banach

lattices.

Definition 3.1. (cf. [C]) A Banach space X has the SCP (= separa-
ble complementation property ) if every separable subspace Y of X is
contained in a separable complemented subspace Z of X. If always Z
can be chosen to be the range of a projection of norm at most λ, we
say that X has the λ-SCP.

A routine argument shows that a space with the SCP must have the
λ-SCP for some λ < ∞.

Recall that the following classes of Banach spaces have the SCP

(a) Abstract L−spaces [K1].
(b) Preduals of von Neumann algebras (Haagerup [GGMS, Ap-

pendix]).
(c) Weakly compactly determined spaces, in particular weakly

compactly generated spaces, in particular reflexive spaces (cf.
[DGZ, Chapt.VI]).

(d) Weakly sequentially complete Banach lattices [GS].
(e) Banach spaces with the commuting bounded approximation

property (Casazza, Kalton, Wojtaszczyk [C, Theorem 9.3]).

It is not known whether a complemented subspace of a space with
the SCP must have the SCP. However, we have

Proposition 3.2. A weakly sequentially complete Banach space which
is isomorphic to a complemented subspace of a Banach lattice has the
SCP.

Proof. By [LT, Vol.II,1.c.6] it is enough to show that if X is a weakly
sequentially complete Banach lattice and Y is the range of a projection
P : X → X then Y has the SCP. We need the following observations.

(i) A separable subspace of a Banach lattice is contained in a
separable sublattice;

(ii) - a precise form of (d). If a Banach lattice X is weakly sequen-
tially complete then every separable subspace of X is contained
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in the range of a contractive projection of X whose range is a
separable sublattice.

(iii) A weakly sequentially complete Banach lattice is comple-
mented in its second dual [LT, Vol.II,1.c.4 ].

Let E be a fixed separable subspace of Y . Using (i) and (ii) we con-
struct inductively increasing sequences of separable subspaces of X,
(En), (Sn), (Gn) and a sequence pn : X → X of contractive projections
with separable ranges such that

E1 = E, En ⊆ Y for n = 1, 2. . . . ;(3.1)

Sn is a sublattice of X and En ⊆ Sn for n = 1, 2, . . . ;(3.2)

Sn ⊆ Gn := pn(X) for n = 1, 2, . . . ;(3.3)

En+1 := cl(P (Gn)).(3.4)

Put F := cl(
⋃∞

n=1 En) and S := cl(
⋃∞

n=1 Sn). Clearly, F and S are
separable and E ⊆ F ⊆ Y . Observe that P (S) ⊆ F , because for each
n one has P (Sn) ⊆ P (Gn) ⊆ En+1 ⊆ F .

Since S a separable weakly sequentially complete sublattice, the
canonical image of S in S∗∗ is the range of a contractive band pro-
jection pS : S∗∗ → S (by (iii)). We shall define a projection π from X
onto F as the composition π = PpSp, where p is defined as follows.

Let LIM be a fixed Banach limit, i.e., a positive linear functional
on l∞ such that LIM(a) = limn an for each convergent scalar sequence
a = (an) (cf. [B, II.3.3], [DS, II.4.22]). We define a linear operator
p : X → S∗∗ by the formula (px)(s∗) = LIMn s∗(pn(x)) for every x ∈ X
and s∗ ∈ S∗.

Note that pSp is a projection from X onto S, because for every fixed
n and z ∈ Sn one has z ∈ Gm for m ≥ n. Hence pm(z) = z for m ≥ n.
Thus pSp(z) = z. Since

⋃∞
n=1 Sn is dense in S and ||p|| = supn ||pn|| =

1, we infer that pSp(z) = z for z ∈ S.
Now, if f ∈ F , then π(f) = P (pSp(f)) = P (f) = f , because f ∈ Y .

Also, if x ∈ X, then π(x) = P (pSp(x)) = P (s), where s = pSp(x) ∈ S.
Since P (S) ⊆ F , it follows that π projects X down onto F . Thus the
restriction of π to Y is the desired projection in Y with separable range
containing E. ¤

For the sake of completeness we include

Proof of (ii). Let E be a separable subspace of a weakly sequentially
complete Banach lattice X. Hence X is order continuous. Then, by
a result of Kakutani (cf. [LT, Vol.II,1.a.9 ]) there is a sublattice X0

of X with a weak unit such that X0 ⊃ E and there is a contractive
projection, say P0, from X onto X0. Since X0 has a weak unit and is



14 T. Figiel, W. B. Johnson and A. PeÃlczyński

order continuous, a result of Nakano (cf.[LT, Vol.II,1.b.16 ]) and the
remark after the proof of [LT, Vol.II,1.b.16]) gives that X0 is weakly
compactly generated. Thus, by a result of Amir and Lindenstrauss
[AL], (cf. [DGZ, Chapt. VI, Theorem 2.5]), there is a contractive
projection P1 : X0 → X0 whose range is separable and contains E.
The desired projection is the composition P1 ◦ P0. ¤

Remark 3.3. A Banach space X has the SEP=separable extension prop-
erty provided that for every separable subspace E ⊂ X there exists an
operator u : X → X with separable range such that u(x) = x for
x ∈ E. Clearly the SCP implies the SEP. A slight modification of the
proof of Proposition 3.2 shows that for weakly sequentially complete
Banach lattices the SEP implies the SCP.

Recall [JL, section 8] that a Banach space E has finite cotype, equiv-
alently E does not contain `n

∞ uniformly, provided that

sup
n

inf
F⊂E, dim F=n

d(F, `n
∞) = ∞.

Here d(·, ·) denotes the Banach-Mazur multiplicative distance. Recall
[JL, section 9] that a Banach space Y has GL-l.u.st. provided that Y ∗∗

is isomorphic to a complemented subspace of a Banach lattice.

Corollary 3.4. If a Banach space Y of finite cotype has GL-l.u.st.
then Y ∗∗ has the SCP. Moreover if Y is isomorphic to a dual Banach
space then Y has the SCP.

Proof. By the local reflexivity principle Y ∗∗ has finite cotype. Thus
Y ∗∗ does not contain subspaces isomorphic to c0 and hence is weakly
sequentially complete [LT, Vol.II,1.c.4]. Remembering that Y has GL-
l.u.st., we infer that the weakly sequentially complete space Y ∗∗ is
isomorphic to a complemented subspace of a Banach lattice. Hence,
by Proposition 3.2, Y ∗∗ has the SCP. Moreover if Y is a dual Banach
space then Y is complemented in Y ∗∗; again we use Proposition 3.2. ¤

4. Property (k)

Recall that (ym) is a CCC sequence of (xn) of elements of a linear
space provided that there are a sequence (cn) of non-negative numbers
and a strictly increasing sequence of positive integers (nm) such that

(4.1) ym =

nm+1−1∑
n=nm

cnxn,

nm+1−1∑
n=nm

cn = 1 (m = 1, 2, . . . ).

CCC - stands for “consecutive convex combinations”.
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Definition 4.1. A Banach space X has property (k) provided that
for every sequence (x∗n) ⊂ X∗ which weak∗ converges to 0 there exists
a CCC sequence (y∗m) of (x∗n) such that for each linear operator u :
L1[0, 1] → X,

lim
m

y∗m(ufm) = 0

for every sequence (fm) in L1[0, 1] which weakly converges to 0 such
that supm ||fm||∞ < +∞.

Remark 4.2. It follows from Sobczyk’s theorem [LT, Vol.I,2.f.5] that
every weak∗ convergent to 0 sequence in the dual of a subspace of a
separable space extends to a weak∗ convergent to 0 sequence in the
dual to the whole space. Thus a subspace of a separable space with
property (k) again has property (k). Clearly if X has property (k) then
every complemented subspace of X has property (k). Therefore if X
has the SCP and property (k) then every separable subspace of X has
property (k).

Remark 4.3. In Definition 4.1 the requirement supm ‖fm‖∞ < ∞ is
superfluous in view of
FACT. If (fn) is a weakly-null sequence in L1[0, 1] then for every
ε > 0 there exists a weakly-null sequence (f ′n) ⊂ L1[0, 1] such that
supn ‖f ′n‖∞ < ∞ and supn ‖fn − f ′n‖1 < ε.
Proof (S. Kwapień). For f ∈ L1[0, 1] let Sm(f) denote the m-th partial
sum of the expansion of f with respect to the Haar basis (m = 1, 2, . . . ).
Since Sm is a conditional expectation with respect to the sigma field
generated by the first m functions of the Haar basis, ‖Sm(f)‖1 ≤ ‖f‖1

and ‖Sm(f)‖∞ ≤ ‖f‖∞. Since (fn) is weakly-null, limn ‖Sm(fn)‖1 = 0
for m = 1, 2. . . . . Thus there is a non-decreasing sequence of indices
(mn) with limn mn = ∞ such that limn ‖Smn(fn)‖1 = 0. Now given
ε > 0 the equi-integrability of the set of elements of the weakly-null

sequence (fn) yields the existence of M < ∞ and (f̃n) ⊂ L1[0, 1] such

that supn ‖f̃n‖∞ < M and supn ‖fn − f̃n‖1 < ε/2. Put

f ′n := f̃n + Smn(fn − f̃n) = f̃n − Smn(f̃n) + Smn(fn) (n = 1, 2, . . . ).

Note that (f̃n − Smn(f̃n)) is a weakly-null sequence in L1[0, 1] because

supn ‖f̃n − Smn(f̃n)‖∞ < 2M and limn Sm(f̃n − Smn(f̃n)) = 0 for m =

1, 2, . . . . Thus (f ′n) is weakly-null. Finally ‖fn − f ′n‖1 ≤ ‖fn − f̃n‖1 +

‖Smn(fn − f̃n)‖1 < ε for n = 1, 2, . . . . ¤
Proposition 4.4.

(a) A separable subspace of a weakly sequentially complete Banach
lattice has property (k).
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(b) A weakly sequentially complete Banach lattice with a weak unit
has property (k).

We need the following variant of the factorization theorem for weakly
compact operators [DFJP].

Lemma 4.5. Let L be a Köthe function space on a probability measure
space (Ω, Σ, µ) (cf. [LT, Definition Vol. II,1.b.17]). Assume that L as a
Banach space is weakly sequentially complete. Then there is a reflexive
Köthe function space R on (Ω, Σ, µ) such that

L∞ := L∞(Ω, Σ, µ)
I∞,R

↪→ R
IR,L

↪→ L,

i.e. the set theoretical inclusion I∞,L admits the factorization through
the set theoretical inclusions I∞,L = IR,L ◦ I∞,R.

Proof. Let Y be a function space on (Ω, Σ, µ) which contains constant
functions and is a module over the algebra L∞. Call a norm p on Y
monotone provided that

p(φf) ≤ p(f)||φ||∞ (f ∈ Y, φ ∈ L∞).

Then Y under the norm p is a Köthe function space on (Ω, Σ, µ).
It is enough to show that if f ∈ Y then |f | ∈ Y and p(|f |) = p(f).

To prove this, define

φ(x) =

{
|f(x)|/f(x) for f(x) 6= 0,

1 otherwise.

Note that ||φ||∞ = ||φ−1||∞. Thus the identities |f | = fφ and f =
|f |φ−1 imply p(|f |) ≤ p(f) and p(f) ≤ p(|f |). Thus p(f) = p(|f |).

Next observe that since L is weakly sequentially complete and L∞
is isomorphic to a C(K)−space, I∞,L is weakly compact [DS, Theorem
VI,§7.6]. Put W = I∞,L(BL∞). Then W is a convex weakly relatively
compact subset of L (In fact W is weakly compact). For each n =
1, 2, . . . let pn be the gauge functional of the set 2nW +2−nBL. Define,
for x ∈ L, p(x) = (

∑∞
n=1 p2

n(x))1/2, let R = {x ∈ L : p(x) < ∞}.
Clearly R is a function space on (Ω, Σ, µ) which is a module over L∞. It
is shown in [DFJP] that R under the norm p is a reflexive Banach space
and we have the factorization I∞,L = IR,L ·I∞,R. It remains to establish
that R is a Köthe space on (Ω, Σ, µ), which reduces to verifying that
the norm p is monotone. For some n ∈ N pick f ∈ 2nW + 2−nBL.
Then f = g + h with ||g||∞ ≤ 2n and ||h||L ≤ 2−n. Hence for every
ψ ∈ L∞ with ||ψ||∞ ≤ 1 we have fψ = gψ + hψ with ||gψ||∞ ≤ 2n and
||hψ||L ≤ 2−n. Thus fψ ∈ 2nW + 2−nBL. Therefore pn is monotone.
Now, in a similar way, we infer that p is monotone. ¤
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Proof of Proposition 4.4. Recall that every separable subspace of a
Banach lattice is contained in a separable sublattice. Consequently, a
Banach lattice is weakly sequentially complete iff every separable sub-
lattice of X is weakly sequentially complete. Every separable lattice has
a weak unit. Hence case (a) reduces to (b). Therefore one can assume
that the lattice in question, say L, has a weak unit. Thus, by [LT, Vol
II,Theorem 1.b.14], there exists a probability measure space (Ω, Σ, µ)
such that L can be represented as a Köthe space on (Ω, Σ, µ) and the
inclusion I∞,L has a dense range. By Lemma 4.5, there is a reflexive
Köthe space R on (Ω, Σ, µ) such that I∞,L = IR,L◦I∞,R. Now we repeat
an argument of [J2]. Since R is reflexive, so is R∗. Thus the adjoint
(IR,L)∗ : L∗ → R∗ is weakly compact, and it is injective because IR,L has
a dense range. Thus if (x∗n) ⊂ L∗ weak∗ converges to 0 then (IR,L)∗(x∗n)
converges to 0 weakly in R∗. Therefore, by S. Mazur’s theorem, there
is a CCC sequence (y∗m) of (x∗n) such that limm ||(IR,L)∗(y∗m)||R∗ = 0.
Thus also the sequence (|(IR,L)∗(y∗m)|) converges to 0 in the norm ||·||R∗ .
But |(IR,L)∗(y∗m)| = (IR,L)∗(|y∗m|) because (IR,L)∗ is a lattice homomor-
phism. But then the only possible weak∗ cluster point in L∗ of (|y∗m|)
is 0, so (|y∗m|) must converge weak∗ in L∗ to 0.

Next note that for every weakly sequentially complete Banach lat-
tice L every operator u : L1[0, 1] → L takes the unit ball of L∞[0, 1],
regarded as a subset of L1[0, 1], into a lattice bounded subset of L
(cf. [AB, p.24]). Thus for every weakly convergent to 0 sequence
(fm) ⊂ L1[0, 1] with supm ||fm||∞ < ∞ there is a positive x ∈ L such
that |ufm| ≤ x for m = 1, 2, . . . . Therefore limm y∗m(ufm) = 0 because

|y∗m(ufm)| ≤ |y∗m|(|ufm|) ≤ |y∗m|(x) (m = 1, 2 . . . )

and (|y∗m|) weak∗ converges to 0. ¤
Proposition 4.4 implies in particular that separable subspaces of ab-

stract L−spaces have property (k). The next proposition extends this
result to some preduals of von Neumann algebras.

Proposition 4.6. A separable subspace of the predual of a von Neu-
mann algebra has property (k).

Proof. A precise version of a result of Haagerup [GGMS, Appendix]
states that every separable subspace of the predual M∗ of a von Neu-
mann algebra M is contained in a separable complemented subspace of
M∗ which is itself the predual of a von Neumann algebra. Thus with-
out loss of generality we can assume in the sequel that M∗ is separable.
Let M+

∗ denote the positive cone of M∗. Since M∗ is separable there
is in M∗ a sequence (ωr) whose elements form a dense set in M+

∗ . Now
let (an) ⊂M be a weak∗-null sequence (= a sequence convergent to 0 in
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the σ(M,M∗)−topology). Then for every ω ∈ M+
∗ the sequence (an)

converges weakly to 0 in the Hilbert space (M, ω). The space (M, ω)
is the completion of M in the norm ‖·‖ω where ‖g‖ω = ω(g∗g+gg∗)1/2

for g ∈ M. Thus applying Mazur’s theorem on convex combinations
we construct a CCC sequence (bm) of the sequence (an) so that for
m = 1, 2, . . . ,

(4.2) ωr(bmb∗m + b∗mbm)1/2 < 1/m for r = 1, 2, . . . , m.

Next let u : L1[0, 1] →M∗ be a bounded linear operator and let (fm) ⊂
L1[0, 1] be a weakly convergent to 0 sequence such that supm ‖fm‖∞ <
∞. Then the sequence (ufm) converges to 0 weakly in M∗. Therefore,
by [T, Theorem III.5.4 (iv)], there exists ω ∈ M+

∗ with the property
that for any ε > 0 there exists δ > 0 such that if ω(bb∗ + b∗b)1/2 < δ
then |b(ufm)|‖b‖ < ε for m = 1, 2, . . . . Since (ωr) is norm dense inM+

∗ ,
it follows from (4.2) that for some k large enough ωk(bb

∗ + b∗b)1/2 < δ
implies |b(ufm)| < ε for m = 1, 2 . . . . Therefore limm bm(ufm) = 0. ¤

The next example shows that in Proposition 4.4 the assumption on
the existence of a weak unit is essential even for abstract L−spaces.

Example 4.I. Let T be the set of all strictly increasing sequences
(nm)∞m=1 of integers with n1 = 1. Define

X := (
∑
t∈T

L1(µt))1,

where for all t ∈ T the measure µt is the normalized Lebesgue measure
on [0, 1]. Then

X∗ = (
∑
t∈T

L∞(µt))∞.

Let (rj) denote the Rademacher functions. Define (g∗n) ⊂ X∗ by

g∗n(t) = rj(n,t),

where j(n, t) = m for nm ≤ n < nm+1 (n = 1, 2, . . . t ∈ T ).

Then g∗n → 0 weak∗ because, for all t ∈ T , gn(t) → 0 weak∗ in L∞(µt) =
(L1(µt))

∗ as n →∞ and supn ‖g∗n‖X∗ = 1.
Suppose now that (h∗m) is a CCC sequence of (g∗n), say

h∗m =

j=no
m+1−1∑

j=no
m

cjg
∗
j ,

j=no
m+1−1∑

j=no
m

cj = 1, cj ≥ 0 (m, j = 1, 2, . . . ).

Let to = (no
m) ∈ T . Define u : L1[0, 1] → X to be identity on the

to coordinate and 0 otherwise. Clearly rj(m,to) → 0 weakly in L1[0, 1]
as m → ∞, while h∗m(urj(m,to)) = 1 for m = 1, 2, . . . . Thus X fails
property (k).
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Recall the Lindenstrauss Lifting Principle [L], [KP]

(LLP) Let Q : X → V be a surjection (X,V−Banach spaces). As-
sume that ker Q is complemented in (ker Q)∗∗. Then for every
L1−space Z, every linear operator u : Z → V admits a lifting
ũ : Z → X, i.e. Qũ = u.

Corollary 4.7. Let

(4.3) 0 → W
J→ X

Q→ V → 0

be an exact sequence of Banach spaces. If W is complemented in W ∗∗

and X has property (k) then V has property (k).

Proof. Let a sequence (v∗n) ⊂ V ∗ weak∗ converge to 0. Then (Q∗v∗n)
weak∗ converges to 0. Since X has property (k), there is a CCC se-
quence (y∗m) of (Q∗v∗n) which satisfies the requirement of Definition
4.1. Let (w∗

m) ⊂ V ∗ be a unique CCC sequence of (v∗n) such that
Q∗w∗

m = y∗m for m = 1, 2 . . . . Since ker Q = W is complemented
in W ∗∗, (LLP) implies that every u : L1[0, 1] → V admits a lifting
ũ : X → V . Since X has property (k), for every weakly convergent to
0 sequence (fk) ⊂ L1[0, 1] with supk ‖fk‖ < ∞ one has

lim
m

w∗
m(ufm) = lim

m
w∗

m(Qũ(fm)) = lim
m

y∗m(ũ(fm)) = 0.

¤

Proposition 4.8. If a Banach space V contains a complemented sub-
space isomorphic to c0, then V fails property (k).

Proof. Let w : c0 → V be an isomorphic embedding onto a comple-
mented subspace of V . Then there is a operator p : V → c0 such that
pw : c0 → c0 is the identity. Let (en) (resp. (e∗n)) denote the unit-vector
basis of c0 (resp. of `1). Then (e∗n) weak∗ converges to 0 in `1 regarded
as the dual space of c0. Hence (p∗(en)) weak∗ converges to 0 in V ∗.
Let (y∗m) be an arbitrary CCC sequence of (p∗(e∗n)). Define ∆m ⊂ c0

for m = 1, 2, . . . by ∆m =
∑nm+1−1

n=nm
en where (nm) is the sequence of

positive integers satisfying (4.1). Define u : L1[0, 1] → V by

uf = w
( ∑

m

(

∫ 1

0

ff̄m) ∆m

)
for f ∈ L[0, 1]

where (fm) is any orthonormal sequence in L2[0, 1] with ‖fm‖∞ = 1
for m = 1, 2, . . . . Clearly (fm) converges weakly to 0 in L1[0, 1] and it
is easy to see that ufm = w∆m for m = 1, 2, . . . and ‖u‖ = ‖w‖. We
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have for m = 1, 2, . . . ,

y∗m(ufm) = (

nm+1−1∑
n=nm

cnp∗e∗n)(w∆m)

= (

nm+1−1∑
n=nm

cne∗n)(pw∆m)

= (

nm+1−1∑
n=nm

cne∗n)(∆m) =

nm+1−1∑
n=nm

cn = 1.

Thus V fails property (k). ¤
Note that `∞ contains c0 but has property (k) because in `∗∞ every
weak∗ convergent sequence converges weakly (cf. [Gr]).

Corollary 4.9. Suppose that we are given an exact sequence (4.3). As-
sume that X has property (k) and V contains a complemented subspace
isomorphic to c0. Then W is not complemented in W ∗∗, in particular
W is not isomorphic to a dual Banach space. ¤

Applying results on property (k) and some results of previous sec-
tions to Banach lattices we get

Corollary 4.10. Suppose that we are given an exact sequence (4.3).
Assume that V contains a subspace isomorphic to c0 and either

(i) X is a separable subspace of a weakly sequentially complete
Banach lattice,

or

(ii) X is a complemented subspace of a weakly sequentially com-
plete Banach lattice with a weak unit,

or

(iii) X is a separable subspace of a Banach space of finite cotype
with GL-l.u.st.

Then W is not complemented in W ∗∗, in particular W is not isomor-
phic to a dual Banach space. ¤

For (iii) note that a Banach space of finite cotype with GL-l.u.st. is
isomorphic to a subspace of a weakly sequentially complete lattice.

If in (4.3) X is a weakly sequentially complete Banach lattice without
a weak unit and V contains an uncomplemented subspace isomorphic
to c0 then sometimes W is not complemented in W ∗∗ (see Example
4.II), and sometimes W is a dual Banach space (see Example 4.III).
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Example 4.II. If Γ is a set of cardinality continuum then there is a
surjection Q : `1(Γ) → `∞. Then W = ker Q is not complemented in
W ∗∗.

Proof. Define u : L1[0, 1] → c0 ⊂ `∞ by uf = (
∫ 1

0
ff̄ndx) for

f ∈ L1[0, 1] where (fn) is any orthonormal uniformly bounded se-
quence. Then u does not lift to `1(Γ) because (fn) weakly converges
to 0, while ‖ufn‖∞ = 1 for n = 1, 2, . . . and in `1(Γ) every weakly
convergent sequence converges in norm. Thus in view of (LLP), W is
not complemented in W ∗∗. ¤

In the last example of this section the kernel of the surjection is a
dual Banach space. The example shows that the SCP may fail when
passing to subspaces. This answers in the negative a question posed in
[PlY].
Example 4.III. Let Q : L → c0(Γ) be a surjection where L is a
separable lattice of finite cotype and Γ is an infinite set. Then Q∗∗ :
L∗∗ → `∞(Γ) = c0(Γ)∗∗ is also a surjection. By Proposition 3.2, L∗∗

has the SCP because L∗∗ has the same cotype as L; hence it is a
weakly sequentially complete lattice. Clearly ker Q∗∗ is a weak∗-closed
subspace of L∗∗, hence it is a dual Banach space, in particular ker Q∗∗

is complemented in its second dual.

Proposition 4.11. ker Q∗∗ fails the SCP; precisely if Γ0 ⊂ Γ is a
countable infinite set, L0 is a separable subspace of L such that Q(L0) =
c0(Γ0) and E is a separable subspace of ker Q∗∗ with ker Q ∩ L0 ⊂ E,
then there is no projection from ker Q∗∗ onto E.

Proof. Let X = cl(L0 + E). Then X is a separable subspace of the
weakly sequentially complete Banach lattice L∗∗. Therefore, by Propo-
sition 4.4(a), X has property (k). We show that the quotient space
X/E contains c0. Let (δj) be the unit-vector basis of c0 = c0(Γ0).
Clearly c0(Γ0) can be regarded as a subspace of c0(Γ). Choose ξj ∈ L0

so that Q(ξj) = δj for j = 1, 2, . . . . Identifying c0(Γ) with its canon-
ical image in `∞(Γ) and L with its canonical image in L∗∗ we in-
fer that Q∗∗(ξj) = δj for j = 1, 2, . . . . Since Q(L0) = c0(Γ0) and
Q∗∗(L∗∗) = `∞(Γ), there are positive constants a and b such that for
arbitrary n = 1, 2, . . . and scalars t1, t2, . . . , tn one has

a‖
n∑

j=1

tjδj‖c0(Γ0) ≥ inf
ξ∈ker Q∩L0

‖
n∑

j=1

tjξj + ξ‖ ≥ inf
ξ∗∗∈E

‖
n∑

j=1

tiξj + ξ∗∗‖

= ‖
n∑

j=1

tjξj‖X/E ≥ inf
ξ∗∗∈ker Q∗∗

‖
n∑

j=1

tjξj + ξ∗∗‖ ≥ b‖
n∑

j=1

tjδj‖`∞ .
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Thus (qξj) is equivalent to the unit-vector basis of c0, where q : X →
X/E denotes the quotient map. Therefore, by Corollary 4.10(i), E
is not complemented in E∗∗ and hence is not isomorphic to a com-
plemented subspace of any dual space, which implies that there is no
projection from ker Q∗∗ onto E (cf. [D, L]). ¤
Remark 4.12. Analyzing the proof of Proposition 4.11 we obtain

If L̃ is a subspace of ker Q∗∗ such that ker Q ⊂ L̃ and L̃ is complemented

in (L̃)∗∗ then L̃ fails the SCP.

5. Application to Sidon sets and Sobolev spaces of
functions of bounded variation

5.1. Spaces of measures on a compact Abelian group orthog-
onal to a fixed Sidon set. Let G be a compact Abelian group, Γ its
dual. Let L1(G) denote the space of all complex-valued functions on
G absolutely integrable with respect to the Haar measure of G. Let
M(G) denote the space of all complex-valued regular Borel measures µ
on G with bounded variation var(µ) with the norm ‖µ‖ = var(µ(G)).
For S ⊂ Γ put S⊥ = Γ \ S. Put

LS⊥
1 (G) = {f ∈ L1(G) :

∫
G

f(g)γ−1(g)dg = 0 for γ ∈ S};
MS⊥(G) = {µ ∈ M(G) :

∫
G

γ−1(g)dµ = 0 for γ ∈ S}.
Clearly LS⊥

1 (G) can be regarded as subspace of MS⊥(G). Less obvious
is the following fact.

Proposition 5.1. There is an isometrically isomorphic embedding Υ :
MS⊥(G) → (LS⊥

1 (G))∗∗ and a contraction P : (LS⊥
1 (G))∗∗ → MS⊥(G)

such that P ◦ Υ = id
MS⊥ (G)

; in other words, MS⊥(G) is isometrically

isomorphic to a complemented subspace (via a contractive projection)

of the second dual of LS⊥
1 (G).

Outline of the proof. Let (ΦU)U∈O be an approximate identity of the
convolution algebra L1(G), where O is the set of neighborhoods of the
unit of G; 0 ≤ ΦU ∈ L1(G);

∫
G

ΦUdg = 1; Φ(g) = 0 for g ∈ G \ U .
Let U be an ultrafilter on O such that {V ∈ O : V ⊆ U} ∈ U , for

U ∈ O. For µ ∈ MS⊥(G) define Υµ ∈ (LS⊥
1 (G))∗∗ by

Υµ(x∗) = LIMU∈U

∫

G

(ΦU ? µ)φx∗(g)dg for x∗ ∈ (LS⊥
1 (G))∗,

where LIMU∈U denotes the limit with respect to the ultrafilter U , φx∗ ∈
L∞(G) = (L1(G))∗ is a norm preserving Hahn-Banach extension of the
functional x∗ and ”?” stands for convolution.
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To define P first observe that MS⊥(G) is naturally isometrically

isomorphic with the dual space of the quotient C(G)/(MS⊥(G))⊥ where

(MS⊥(G))⊥ = {f ∈ C(G) :

∫

G

f(g)dµ = 0 for µ ∈ MS⊥(G)}.

Define the isometrically isomorphic embedding

J : C(G)/(MS⊥(G))⊥ → (LS⊥
1 (G))∗

as follows: if [ψ] is a coset of a ψ ∈ C(G) then J([ψ]) ∈ LS⊥
1 (G)∗ is

defined by J([ψ])(f) =
∫

G
ψ(g)f(g)dg for f ∈ LS⊥

1 (G). Remembering

that (C(G)/(MS⊥(G))⊥)∗ = MS⊥(G) we put

P := J∗ : (LS⊥
1 (G))∗∗ → MS⊥(G),

in other words Px∗∗ is the restriction of the functional x∗∗ acting on
LS⊥

1 (G)∗ to the subspace J(C(G)/(MS⊥(G))⊥). We omit a routine
verification that Υ and J are isometrically isomorphic embeddings and
the proof of the identity PΥ(µ) = µ for µ ∈ MS⊥(G). ¤
Next we list several properties of the spaces MS⊥(G) and LS⊥

1 (G) for S
being Sidon sets. The properties (vi) and (vii) below were established
with different proofs in [J2, Theorem 2.1 and Corollary 2.9].

Theorem 5.2. Let S ⊂ Γ be an infinite Sidon set in the dual Γ of a
compact Abelian group G. Then

(i) The spaces LS⊥
1 (G) and MS⊥(G) have the UAP .

(ii) If Γ is countable then LS⊥
1 (G) has a basis.

(iii) Every separable subspace of LS⊥
1 (G) (resp. MS⊥(G)) is con-

tained in a separable subspace of LS⊥
1 (G) (resp. MS⊥(G)) with

a basis.
(iv) MS⊥(G) fails the SCP.

(v) MS⊥(G) fails the commuting bounded approximation property.

(vi) MS⊥(G) fails GL-l.u.st.

(vii) LS⊥
1 (G) fails GL-l.u.st.

Proof. Recall that S is a Sidon set iff the map Q : f → (
∫

G
f(g)γ−1(g)dg)γ∈S

is a surjection from L1(G) onto c0(S) (resp. the map µ → (
∫

G
γ−1(g)dµ)γ∈S

is a surjection from M(G) onto `∞(S) (cf. [HR, Theorem 37.4]). Of
course, L1(G) and M(G) are L1−spaces. Thus applying Theorem 2.1
(c) we get (i) because c0(S) and `∞(S) are L∞−spaces.

(ii) is due to Lusky and it follows directly from (L) (see Section 2).
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(iii) follows from Proposition 2.3 because for S infinite c0(S) is iso-
morphic to the space of all continuous functions on the one-point com-
pactification of the discrete set S, while `∞(S) is isometrically iso-
morphic to the space of all continuous functions on the Stone-Čech
compactification of S.

(iv) L1(G) is a Banach lattice of cotype 2. By Proposition 5.1,

MS⊥(G) ⊂ ker Q∗∗ = (LS⊥
1 (G))∗∗. Moreover MS⊥(G) is complemented

in its second dual because it is the dual of C(G)/(MS⊥(G))⊥. The
desired conclusion follows from Proposition 4.11 and Remark 4.12. To

apply Remark 4.12 we put L̃ = Υ(MS⊥(G)), where Υ is defined in the
proof of Proposition 5.1.

(v) Combine (iv) with the result of Casazza, Kalton and Wojtaszczyk
mentioned in Section 3.

(vi) Combine (iv) with Corollary 3.4. Note that MS⊥(G) ⊂ M(G)
has cotype 2.

(vii) If a Banach space X has GL-l.u.st. then all complemented
subspaces of the even duals of X have GL-l.u.st. Thus (vii) follows
from (vi) and Proposition 5.1. ¤

5.2. Sobolev spaces of functions of bounded variation. Let Ω ⊂
Rn be an open non-empty set. For a measurable complex-valued f on
Ω put

||f ||BV =

∫

Ω

|f |dλn + |Df |(Ω),

where |Df | is a positive regular measure of bounded variation defined
for open Ω′ ⊂ Ω by

|Df |(Ω′) = sup |
∫

Ω′
f div φdλn| = sup |

∫

Ω′
(f

∑
j

∂φj

∂xj

)dλn| ,

λn denotes the n−dimensional Lebesgue measure and the supremum
extends over all infinitely many times differentiable complex valued
functions φ = (φj)

n
j=1 with compact support from Rn into the unit ball

of the n−dimensional complex Hilbert space.
Put

BV (Ω) = {f : Ω → C - measurable : ||f ||BV < ∞}.
BV (Ω) is a nonseparable Banach space. It consists of absolutely inte-
grable functions whose distributional partial derivatives exist and are
measures with total bounded variation. The Sobolev space W 1

1 (Ω)
is isometrically isomorphic with the subspace of BV (Ω) consisting of
those functions whose distributional gradient is a Cn-valued measure
absolutely continuous with respect to λn.
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Theorem 5.3. If Ω ⊂ Rn is an open non-empty set, then

(a) BV (Ω) isometrically embeds into an abstract L1−space - the
Cartesian power (M(Ωn))n+1, where M(Ω) is the space of all
complex-valued regular Borel measures on Ω with bounded vari-
ation.

(b) BV (Ω) is a dual Banach space.
(c) If n ≥ 2 then BV (Ω) fails the SCP.

Proof. (a) is obvious.
For (b) observe thatM(Ω)n+1 is the dual space of the space C0(Ω)n+1

where C0(Ω) is the space generated in the uniform norm by all con-
tinuous complex-valued functions on Ω with compact support. The
space BV (Ω) is isometrically isomorphic to a weak∗−closed subspace
of M(Ω)n+1 (cf.[PW]).

The proof of (c) requires several steps. First, it routinely reduces
to the case Ω = Rn. Indeed, an open non-empty set Ω contains a
closed cube. If In denotes the interior of the cube then there is a
linear extension operator from BV (In) into BV (Ω). Therefore BV (Ω)
contains a complemented subspace isomorphic to BV (In); the operator
of restriction of functions on Ω to In composed with the linear extension
is the desired projection. Finally, by a decomposition technique (cf.
[PW, Proof of Theorem 7.1]) one shows that BV (In) is isomorphic to
BV (Rn). Thus BV (Ω) contains a complemented subspace isomorphic
to BV (Rn). To complete the proof of (c) it suffices to establish

Proposition 5.4. If n ≥ 2 then BV (Rn) fails the SCP. More precisely,
if E is a separable subspace of BV (Rn) which contains W 1

1 (Rn) then E
is not complemented in BV (Rn).

We need several facts about traces.
Let b ∈ R; x = (x(j))n

j=1 ∈ Rn. Put

H−
b = {x ∈ Rn : x(n) < b}; H+

b = {x ∈ Rn : x(n) > b};
Hb = {x ∈ Rn : x(n) = b}.

In the sequel we identify L1(Hb, λn−1) with L1(Rn−1).

Write f ∈ CV b(H−
b ) provided that f ∈ BV (H−

b ) and there is
δ = δ(f) > 0 such that the restriction f |{x : −δ + b < x(n) < b}
is λn a.e. equal to a C∞−function uniformly continuous with all its
partial derivatives. Note that if f ∈ CV b(H−

b ) then f has a unique
extension - denoted also by f - to a C∞−function on H−

b ∪ Hb. The
definition of CV b(H+

b ) is similar.
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General Gagliardo-Nirenberg Theorem [PW], [AFP]. There is
a unique contractive linear operator Trσ

b : BV (Hσ
b ) → L1(Rn−1), where

σ = + or σ = −, such that if f ∈ CV b(Hσ
b ) then Trσ

b (f) = f |Hb.
Moreover:

(i) if f ∈ W 1
1 (Rn) then Tr−b (f |H−

b ) = Tr+
b (f |H+

b ) =: Trb(f);
(ii) Trb(W

1
1 (Rn)) = L1(Rn−1).

Peetre’s Theorem [Pee], [PW]. The operator Tr−b : W 1
1 (H−

b ) →
L1(Rn−1) has no bounded lifting, i.e. there is no linear operator V :
L1(Rn−1) → W 1

1 (H−
b ) such that Tr−b ◦V = IdL1(Rn−1).

Theorem on extending traces [PW]. There is a bounded linear
operator

Λ−b : BV (H−
b ) → W 1

1 (H+
b )

such that

Tr−b (f) = Tr+
b (Λ−b f) ∀f ∈ BV (H−

b ),

and there is also Λ+
b : BV (H+

b ) → W 1
1 (H−

b ) with similar properties.

Proof of Proposition 5.4. Let E ⊃ W 1
1 (Rn) be a separable subspace of

BV (Rn). It suffices to construct a separable subspace F ⊂ BV (Rn)
such that

(j) E ⊂ F ;
(jj) E is uncomplemented in F .

To this end observe that there exists b ∈ R such that

(5.1) |Df |(Hb) = 0 for all f ∈ E.

Indeed if b1 6= b2 then Hb1 ∩ Hb2 = ∅. Thus for every f ∈ E the
set Af = {b ∈ R : |Df |(Hb) 6= 0} is countable. Hence if S is a
countable dense set in the separable space E then the set

⋂
f∈S(R\Af )

is uncountable. It is easy to see that every b in the intersection satisfies
(5.1).

Next fix b ∈ R satisfying (5.1) and put

W̃ 1
1 (H−

b ) :=
{

g ∈ BV (Rn) : g|H−
b ∈ W 1

1 (H−
b ) and g|(Rn \H−

b ) ≡ 0
}

;

F := the closure in BV (Rn) of E + W̃ 1
1 (H−

b ).

Define the operator Q : F → L1(Rn−1) by Qf = Tr−b (f |H−
b ) −

Tr+
b (f |H+

b ). Then Q(F ) = L1(Rn−1), because Q(F ) ⊇ Q(W̃ 1
1 (H−

b )) ⊇
L1(Rn−1), by the General Gagliardo-Nirenberg Theorem.

Lemma 5.5. ker Q = E.
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Proof. If e ∈ E then |De|(Hb) = 0. Thus by [PW, Lemma 3.1.1]
(special case k = 1, Ξa = Rn), given ε > 0 there is an f ∈ BV (Rn)
such that ‖f − e‖BV (Rn) < ε and for some δ > 0 the restriction f |{x :
|b−x(n)| < δ} is equal to a C∞−function λn a.e. Clearly Tr−b (f |H−

b )−
Tr+

b (f |H+
b ) = 0. Hence |Tr−b (e|H−

b ) − Tr+
b (e|H+

b )| < 2ε. Letting ε ↓ 0
we get Tr−b (e|H−

b )− Tr+
b (e|H+

b ) = 0. Therefore e ∈ ker Q.
To prove that ker Q ⊆ E, fix f ∈ ker Q and let ε > 0. Pick g ∈

W̃ 1
1 (H−

b ) and e ∈ E with ||f − g − e||BV (Rn) < ε. Since ||Q|| ≤ 2,

2ε > ||Q(f − g − e)||L1(Rn−1) = ||Qg||L1(Rn−1) = ||Tr−b (g)||L1(Rn−1).

Note that g|H−
b ∈ W 1

1 (H−
b ) because g ∈ W̃ 1

1 (H−
b ). Thus using the fact

that CV b(H−
b ) is dense in W 1

1 (H−
b ) (cf. [PW, Lemma 3.1.1]) we infer

that there exists a < b with 2ε > ||g|{a < x(n) < b}||W 1
1 ({a<x(n)<b}).

Hence, by the extension formula for W 1
1 functions (cf. [A]), there exists

e∗ ∈ W 1
1 (Rn) which extends g|{a < x < b} with ||e∗||W 1

1 (Rn) ≤ Cε,

where the constant C is independent of ε. Define g∗ ∈ W 1
1 (Rn) ⊂ E

by

g∗(x) =

{
g(x) for x ≤ a,

e∗(x) for x > a.

Then ‖g−g∗‖BV (Rn) ≤ Cε. Thus ‖f−g∗−e‖BV (Rn) < (2+C)ε. Hence,
letting ε ↓ 0, we infer that f ∈ E. ¤

We now complete the proof of Proposition 5.4. Assume that (jj)

is false, i.e., there exists a bounded projection P : F
onto→ E. Define

S : L1(Rn−1) → F by Sg = f − Pf whenever Qf = g. Then S is well
defined, because ker Q = E by Lemma 5.5 and S is bounded, by the
Open Mappping Theorem. Clearly, QSg = Q(f − Pf) = Qf = g for
g ∈ L1(Rn−1).

Let Λσ
b : BV (Hσ

b ) → W 1
1 (H−σ

b ) be trace preserving operators and let
Rσ denote the operator of restriction of functions to Hσ

b , where σ = ∓.
Define U : F → W 1

1 (H−
b ) by

Uf = Λ+
b Λ−b R−f − Λ+

b R+f (f ∈ F ).

We shall show that V = US lifts Tr−b (contrary to Peetre’s Theorem).
First note that given f ∈ F the properties of Λσ

b imply

Tr−b (Λ+
b R+f) = Tr+

b (R+f),

Tr−b (Λ+
b Λ−b R−f) = Tr+

b (Λ−b R−f) = Tr−b (R−f),

and hence Tr−b (Uf) = Qf .
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Now recall that if g ∈ L1(Rn−1) then Sg ∈ F and QSg = g. Hence

Tr−b (USg) = QSg = g.

This contradiction completes the proof of Proposition 5.4. ¤
Remark 5.6. BV (Rn) has the BAP and every separable subspace of
BV (Rn) is contained in a separable subspace with a basis [ACPP]. We
do not know whether BV (Ω) has the same property for arbitrary open
Ω ⊂ Rn.

6. Open problems

Problem 6.1. If Y is a subspace of X such that X, Y and X/Y all have
the BAP , must the pair (X, Y ) have the BAP?

We do not know the answer to Problem 6.1 even when X is reflexive.

Problem 6.2. If X is a Lp space, 2 < p < ∞, and Y is a subspace of X
with the BAP (resp. UAP ), must X/Y have the BAP (resp. UAP )?
Equivalently, if X is a Lq space, 1 < q < 2, and Y is a subspace of
X such that X/Y has the BAP (resp. UAP ), must Y have the BAP
(resp. UAP )?

Problem 6.3. Does every weakly sequentially complete Banach space
with GL-l.u.st. have the SCP?

Problem 6.4. Does every complemented subspace of a space with the
SCP have the SCP? Does X have the SCP if X∗∗ does?

Proposition 3.2 and Corollary 3.4 give positive answers to special
cases of Problem 6.3 and Problem 6.4.

Problem 6.5. Suppose that X and Y have property (k). Must the
projective tensor product X⊗̂Y have property (k)?

Problem 6.6. Does a predual of a σ−finite von Neumann algebra have
property (k)? (A von Neumann algebra is said to be σ−finite if it
admits at most countably many mutually orthogonal projections.)

Problem 6.7. Does BV (Rn) have the UAP?

A well known and important problem is whether X∗ has the metric
approximation property whenever X∗ has the BAP ; see [C, Theorem
3.7]. We do not know the answer to the following two special cases of
this problem.

Problem 6.8. Does BV (Rn) have the metric approximation property?

Problem 6.9. Does MS⊥(G) have the metric approximation property
for every Sidon set S ⊂ Γ?
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