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Abstract. We prove that a WLD subspace of the space `c∞(Γ) consisting of all bounded,
countably supported functions on a set Γ embeds isomorphically into `∞ if and only if it
does not contain isometric copies of c0(ω1). Moreover, a subspace of `c∞(ω1) is constructed
that has an unconditional basis, does not embed into `∞, and whose every weakly compact
subset is separable (in particular, it cannot contain any isomorphic copies of c0(ω1)).

1. Introduction

It is classical that every separable Banach space is isometrically isomorphic to a subspace
of `∞, the space of bounded sequences with the supremum norm. Since every weakly
compact subset of `∞ is separable, any weakly compactly generated space; in particular,
any reflexive space; that admits an injective bounded linear operator into `∞ must be
separable. (A Banach space is weakly compactly generated, WCG for short, when it contains
a weakly compact subset whose linear span is dense.) For this reason, there is no bounded
linear injection from c0(Γ) into `∞ when the set Γ is uncountable. Nevertheless, c0(ω1) sits
naturally as a subspace of `∞’s close cousin, the space `c∞(Γ), which consists of all bounded
scalar-valued functions on Γ that are non-zero on at most countably many points in Γ.

The aim of this note is to study Banach spaces that embed into `c∞(ω1) but do not
embed into `∞ and their relation to containment of isomorphic or even isometric copies of
c0(ω1). In particular, we prove that a non-separable weakly Lindelöf determined (WLD)
subspace of `c∞(Γ) contains an isometric copy of c0(ω1). (A Banach space X is WLD
provided for some set Γ there exists an injective linear operator T : X∗ → `c∞(Γ) that is
continuous as a map from X∗ with the weak* topology to `c∞(Γ) with the topology of
pointwise convergence.)

The notation is standard. We just mention that all operators are assumed to be bounded
and linear, and an isomorphism is a bounded linear operator that is bounded below on
the unit sphere of its domain. We consider cardinal numbers as initial ordinal numbers.
A cardinal number λ is regular whenever a set of cardinality λ cannot be expressed as a
union of fewer than λ sets that have cardinality less than λ.
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2. The results

For a WLD space X, the density character of X∗ endowed with the weak* topology is
the same as of X with the norm topology ([3, Proposition 5.40]), hence the existence of a
bounded linear injection T : X → `∞ implies that X is separable. Indeed, by Goldstine’s
theorem, `∗∞ = `∗∗1 is weak*-separable. By injectivity of T , the adjoint map T ∗ : `∗∞ → X∗

has dense range, and so X∗ has a weak*-separable dense subspace, therefore it must be
weak*-separable. As X is WLD, also X must be separable. We shall employ this fact
to construct copies of c0(ω1) in non-separable WLD subspaces of `c∞(Γ). (In the case of
X = c0(Γ) the result was already recorded in [7] and [4, Lemma 6]).

Theorem 2.1. Let Γ be a set and let X be a WLD subspace of `c∞(Γ). Then the following
are equivalent:
(i) X is separable,
(ii) X embeds into `∞,
(iii) there exists a bounded linear injection from X into `∞,
(iv) X does not contain a subspace that is isomorphic to c0(ω1),
(v) X does not contain a subspace that is isometrically isomorphic to c0(ω1).

In particular, every reflexive subspace of `c∞(Γ) is separable.

First we introduce some notation. Let Γ be a set and let Λ ⊆ Γ. Consider the contractive
projection PΛ : `c∞(Γ)→ `c∞(Γ) given by

(PΛf)(γ) =

{
f(γ) γ ∈ Γ,
0, γ ∈ Λ \ Γ

(
f ∈ `c∞(Γ)

)
.

We identify the range of PΓ with the space `c∞(Γ). Certainly, when Γ is countably infinite,
the range of PΓ is isometrically isomorphic to `∞.

Proof. The implications (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v) are clear. We have already observed
in the introduction that for WLD spaces (iii) ⇒ (i). We shall prove now that (v) ⇒ (iii)
by contraposition.

Suppose that there is no bounded linear injection from X into `∞. In particular, for
every countable set Λ ⊂ Γ, the restriction operator PΓ|X is not injective, which means
that PΛfΛ = 0 for some unit vector fΛ in the range of PΛ. Consequently, it is possible to
choose by transfinite recursion an uncountable family of pairwise disjoint countable subsets
(Λα)α<ω1 and unit vectors fα ∈ `∞(Λα)∩X. Then, the closed linear span of {fα : α < ω1}
is isometric to c0(ω1). �

Remark 2.2. Theorem A implies that the unit sphere of a non-separable WLD subspace
of `c∞(Γ) contains an uncountable symmetrically (1+)-separated subset, that is, a set A
such that ‖x ± y‖ > 1 for distinct x, y ∈ A; this is because c0(ω1) has this property.
This observation complements [2, Corollary 3.6], where it was proved that WLD spaces of
density greater than the continuum contain such sets. It should be noted however that not
every renorming of c0(ω1) embeds isometrically into `c∞(Γ), as at least under the Continuum
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Hypothesis, there exists a renorming of c0(ω1) that does not contain isometric copies of
itself ([2, Theorem 5.9]).

The hypothesis of being WLD cannot be removed completely from the statement of
Theorem A. Before we give a relevant example, we prove a simple lemma.

Lemma 2.3. Let X be a subspace of `c∞(ω1). If X embeds into `∞, then there is a α < ω1

such that the operator P[0,α)|X is bounded below; that is, bounded below on the unit sphere
of X.

Proof. Since `∞ is injective, there is an operator J : `c∞(ω1) → `∞ so that the restriction
of J to X is bounded below (indeed, J is any extension of an embedding of X into `∞ to
`c∞(ω1)). It is therefore enough to observe that for any operator J : `c∞(ω1) → `∞ there is
a countable ordinal α such that J vanishes on `c∞

(
[α, ω1)

)
(because then J factors through

the quotient `c∞(ω1)/`c∞
(
[α, ω1)

)
, which is isomorphic to `c∞

(
[0, α)

) ∼= `∞). �

Theorem 2.4. There exists a subspace Z of `c∞(ω1) with an unconditional basis such that
Z does not embed into `∞ and c0(ω1) does not embed into Z. Moreover, Z contains an
isomorphic copy of `1(ω1) and there is an injective operator from Z into `∞.

Proof. Since `∞ contains an isometric copy of `1(c), we may fix a countable set Γ0 in ω1

and a family of unit vectors (fα)α<ω1 in the range of PΓ0 that is isometrically equivalent to
the unit vector basis of `1(ω1). Let α = γ(α) + n(α) be a countable ordinal, where γ(α) is
a (possibly zero) limit ordinal and n(α) is a finite ordinal. We set

zα = eα + 1
n(α)+1

zα (α < ω1),

where (eα)α<ω1 is the standard unit vector basis of c0(ω1) ⊂ `c∞(ω1). Let Z be the closed
linear span of zα (α < ω1) in `c∞(ω1). Then (zα)α<ω1 is a 1-unconditional basis for Z.
Moreover the operator PΓ0|Z is injective, so Z cannot contain non-separable weakly compact
sets as every weakly compact subset of `∞ is separable. In particular, X does not contain
any isomorphic copies of c0(ω1).

By Lemma 2.3, Z does not embed into `∞ because the operator P[0,α)|X is not bounded
below for any countable ordinal α.

Finally, we remark that PΓ0 is an isomorphism when restricted to the copy of `1(ω1)
spanned by the family {zα : α < ω1, n(α) = 0}. �

Remark 2.5. As was noted in the proof of Theorem 2.4, the example Z does not embed
into `∞ but there is an injective operator from Z into `∞. The first space having these
properties was constructed in [6], but that space does not have an unconditional basis.

2.1. An extension to higher densities. For every cardinal λ, there is a natural general-
isation of the space `c∞(Γ); namely, `λ∞(Γ), the subspace of `∞(Γ) that comprises functions
whose supports have cardinality strictly less than λ. In this notation, `c∞(Γ) = `ω1

∞ (Γ). We
note that Theorem 2.1 has a natural counterpart for spaces `λ∞(Γ), whenever λ is a regular
cardinal.
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Theorem 2.6. Let Γ be a set, λ a regular cardinal number, and let X be a subspace of
`λ∞(Γ). Then the following are equivalent:
(i) w∗−densX∗ < λ,
(ii) X embeds into `∞(κ) for some κ < λ,
(iii) there exists a bounded linear injection from X into `∞(κ) for some κ < λ,
(iv) X does not contain a subspace that is isomorphic to c0(λ),
(v) X does not contain a subspace that is isometrically isomorphic to c0(λ).

Proof. Note that (iii) ⇒ (i). Indeed, if there is a bounded linear injection T from X into
`∞(κ), then T ∗ has weak*-dense range. As (by Goldstine’s theorem) the weak* density of
`∞(κ)∗ is κ, the conclusion follows. The implication (iii) ⇒ (iv) follows from the fact that
the weak* density of c0(λ)∗ is λ and thus there is no bounded linear injection from c0(λ)
to `∞(κ) for κ < λ (see, e.g., [3, Fact 4.10]). (We remark in passing that the implication
(ii)⇒ (iv) was proved directly in [5, Proposition 3.4].) As previously, it is enough to prove
that (v) ⇒ (iii).

Assume contrapositively that for all κ < λ there is no bounded linear injection from X
into `∞(κ). In particular, |Γ| > λ as otherwise `λ∞(Γ) = `∞(Γ) but X is a subspace of
`λ∞(Γ). Without loss of generality we may assume that |Γ| = λ.

Let A be a family of non-zero vectors in X that is maximal with respect to the property
that the vectors have pairwise disjoint supports. If A has cardinality λ, the conclusion
follows as A spans an isometric copy of c0(λ). So assume that |A| < λ. Let

Λ =
⋃
f∈A

supp f.

As λ is regular (and |Γ| > λ), |Λ| < λ. Consequently, by maximality of A, the contractive
projection PΛ : `λ∞(Γ)→ `λ∞(Λ) maps X injectively into `∞(Λ); a contradiction �

Theorem 2.6 fails for singular cardinal numbers. Indeed, let λ = ωω = limn→∞ ωn. The
space `∞(ωn) contains an isometric copy of `2(ωn). In particular, the c0-direct sum of `2(ωn)
(n ∈ N) embeds isometrically into `λ∞, has density λ, and is WCG (and even Asplund).
On the other hand, it does not contain c0(λ).
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