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WBJ and E. Odell, The diameter of the iso-
morphism class of a Banach space.

D(X) = sup{d(X1, X2) : X1, X2 are isomorphic toX}.
[Schäffer, ’76]: Is D(X) = ∞ for all infinite di-
mensional X?

The late V. Gurarii pointed out that D(X) =∞
for many classes of spaces (super-reflexive; all
“classical” spaces; . . . ). Indeed, if X is infi-
nite dimensional and E is any finite dimensional
space, them there is a space X0 so that X is
isomorphic to E ⊕2 X0. Therefore, if D(X) is
finite, then X is finitely complementably uni-
versal; that is, there is a constant C so that
every finite dimensional space is C-isomorphic
to a C-complemented subspace of X. This im-
plies that X cannot have non trivial type or non
trivial cotype or local unconditional structure
or numerous other structures. In particular,
X cannot be any of the classical spaces or be
super-reflexive.

[J-O, ’05]: The answer to Schäffer’s question is
yes for separable X.



Call a Banach space X K-elastic provided

every isomorph of X K-embeds into X. Call

X elastic if X is K-elastic for some K <∞.

Theorem. If X is a separable Banach space

so that for some K, every isomorph of X is

K-elastic, then X is finite dimensional.

This of course implies that D(X) = ∞ if X is

separable and infinite dimensional.

Conjecture. If X is an elastic infinite dimen-

sional separable Banach space, then C[0,1] is

isomorphic to a subspace of X.

The proof of the Theorem could be consider-

ably streamlined if the Conjecture has an affir-

mative answer.



Call a Banach space X K-elastic provided

every isomorph of X K-embeds into X. Call

X elastic if X is K-elastic for some K <∞.

Theorem. If X is a separable Banach space

so that for some K, every isomorph of X is

K-elastic, then X is finite dimensional.

If X satisfies the hypothesis of the theorem but

is infinite dimensional, then

1. c0 must embed into X (uses Bourgain’s

index theory).

2. There must be a weakly null normalized se-

quence (WNNS) which has a spreading model

that is neither `1 nor c0.



The other two steps in the proof of the The-
orem are of a general character. Both involve
mathematics from the 1970s.

3. If the WNNS {xn}∞n=1 in a space Y has a
spreading model that is neither `1 nor c0, then
∀C, ∃N , there is a subsequence {yn}∞n=1 and an
equivalent norm | · | on Y s.t. no subsequence
of {yn}∞n=1 is block N-unconditional with con-
stant C for the norm | · |. (Uses [Mauey-Rosenthal, ’77]

considerations.)

A basic sequence {xn}∞n=1 block N-unconditional
with constant K if every block basis {yi}Ni=1 of
{xn}∞n=1 is K-unconditional; that is,

‖
N∑
i=1

±aiyi‖ ≤ K‖
N∑
i=1

aiyi‖

for all scalars {ai}Ni=1 and all choices of ±.

4. If X is separable, then ∀N there is an
equivalent norm on X s.t. every WNNS has
a subsequence which is block N-unconditional
with constant 3 for the equivalent norm. (Uses

[Lindenstrauss-Pe lczyński, ’71] considerations.)



WBJ and G. Schechtman, Very tight embed-
dings of subspaces of Lp, 1 < p < 2, into `np ,
GAFA 13 (2003), 845–850.

The first random embedding theorem for other
than Hilbert spaces [J-S, ’82] was that if 1 ≤ p <
r < 2, then ∀ε > 0 the space `nr 1 + ε–embeds
into `Np with N = K(p, r, ε)n. When r = 2, this
comes out of Milman’s approach to Dvoret-
zky theorem [Figiel-Lindenstrauss-Milman, ’77]. But an-
other approach [Kashin, ’77] also yielded that for
r = 2, the space `nr K–embeds into `

(1+ε)n
p

with K = K(ε). Whether Kashin’s theorem
was valid for p < r < 2, left open in [J-S, ’82],
was proved in [J-S, ’03]. The main new tool was
a theorem in [Bourgain-Kalton-Tzafriri, ’89] that says
(qualitatively speaking) that if Q is a quotient
map from `np onto a space with dimension pro-
portional to n, then the restriction of Q to
some proportional dimensional coordinate sub-
space is a good isomorphism. By iterating this
theorem, [J-S, ’03] show that `nr K–embeds into
`
(1+ε)n
p with K = K(p, r, ε).



The [J-S, ’82] result was extended and general-

ized by [Pisier, ’83], [S, ’87], [Bourgain-Lindenstrauss-Milman,

’89], [Talagrand, ’90]. These works and [J-S, ’03] yield

that every n dimensional subspace of Lr must

K–embed into `(1+ε)n
p with K = K(p, r, ε) when

1 ≤ p < r < 2.

One open problem is whether there is a purely

random way of embedding `nr into `
(1+ε)n
p . Be-

fore [J-S, ’03], only random tools were used [Naor-

Zvavitch, ’01] to show that `nr K–embeds into

`
(1+ε)n
1 with K = K(r, ε)(logn)f(r,ε).



WBJ, B. Maurey, and G. Schechtman, Weakly
null sequences in L1, JAMS 20 (2007), 25–36.

The first weakly null normalized sequences (WNNS)
with no unconditional subsequence were con-
structed in [Maurey-Rosenthal, ’77]. Their technique
was incorporated into [Gowers-Maurey, ’92], but the
examples in [M-R, ’77] are still interesting because
the ambient spaces were C(K) with K count-
able, which are hereditarily c0. Every sub-
sequence of the WNNS they constructed re-
produces the (conditional) summing basis on
blocks.

[Maurey-Rosentha], ’77] asked whether every WNNS
sequence in L1 has an unconditional subse-
quence. In [J-M-S, ’07] we construct a WNNS in
L1 s.t. every subsequence contains a block ba-
sis that is 1+ ε–equivalent to the (conditional)
Haar basis for L1. In fact, the theorem stated
this way extends to rearrangement invariant
spaces which (in some appropriate sense) are
not to the right of L2 and which are not too
close to L∞.



WBJ, B. Maurey, and G. Schechtman, Non-

linear factorization of linear operators, (sub-

mitted).

[J-M-S, 07?] gives an affirmative answer to the

question [Heinrich-Mankiewicz, ’82] whether the L1 spaces

are preserved under uniform equivalence (i.e.,

f , f−1 both uniformly continuous).

At the heart of the question is a recurring prob-

lem:

Suppose a linear mapping T : X → Y admits a

Lipschitz factorization through a Banach space

Z; i.e., we have Lipschitz F1 : X → Z and

F2 : Z → Y and F2 ◦ F1 = T . What extra

is need to guarantee that T admits a linear

factorization through Z?

Something extra is needed because the identity

on C[0,1] Lipschitz factors through c0 [Aharhoni,

’74], [Lindenstrauss, ’64].



The main result in [J-M-S, 07?] is

Theorem. Let X be a finite dimensional normed

space, Y a Banach space with the RNP and

T : X → Y a linear operator. Let Z be a sepa-

rable Banach space and assume there are Lip-

schitz maps F1 : X → Z and F2 : Z → Y with

F2 ◦ F1 = T . Then for every λ > 1 there are

linear maps T1 : X → L∞(Z) and T2 : L1(Z)→
Y with T2 ◦ i∞,1 ◦ T1 = T and ‖T1‖ · ‖T2‖ ≤
λLip (F1)Lip (F2).

Notice that if Z is L1 then so is L1(Z) and

hence T linearly factors through a L1 space.

This and fairly standard tools in non linear ge-

ometric functional analysis give an affirmative

answer to the problem from [H-M, ’82].

The proof of the Theorem is based on a rather

simple local-global linearization idea. For the

application we need only the case where Y is

finite dimensional.



V. P. Fonf, WBJ, G. Pisier, and D. Preiss,
Stochastic approximation properties in Banach
spaces, Studia Math. 159 (2003), 103–119.

A Banach space X has the stochastic approxi-
mation property (SAP) provided for every Radon
measure µ on X there is a sequence (Tn) of fi-
nite rank operators on X s.t. for µ-a.e. x ∈ X,
Tnx→ x. If The Tn can always be chosen to be
the partial sum projections Tn =

∑n
i=1 x

∗
i ⊗ xi

associated associated with a fundamental and
total biorthogonal system (xn, x∗n), we say that
X has the stochastic basis property (SBP).

[Kwapien-Rosinski, ’80] asked whether every Banach
space has the stochastic approximation prop-
erty.

Theorem. [F-J-P-P, ’03] If X has non trivial type
and has the SAP, then X has the approxima-
tion property.

However, the SBP may still be useful for for
probability in Banach spaces because it is proved
in [F-J-P-P, ’03] that the SAP and the SBP are
equivalent.



WBJ and A. Szankowski, Complementably uni-

versal Banach spaces, II, and .....

Given a family F of operators between Banach

spaces, it is natural to try to find a single (usu-

ally separable) Banach space Z s.t. all the

operators in F factor through Z. If F is the

collection of all operators between separable

Banach spaces that have the bounded approx-

imation property, there is such a separable Z;

namely, the separable universal basis space of

[Pe lczyński, ’69], [Kadec, ’71], [Pe lczyński, ’71]. This space,

as well as smaller (even reflexive) spaces [J, ’71]

have the property that every operator that is

uniformly approximable by finite rank opera-

tors factor through Z. Now there is not a

separable space s.t. every operator between

separable spaces factors through it [J-Szankowski,

’76], but this paper left open the possibility that

there is a separable space s.t. every compact

operator factors through it. It turns out that

no such space exists [J-S, 08?].



WBJ and A. Szankowski, Banach spaces all of

whose subspaces have the approximation prop-

erty, II.

A Banach space has the hereditary approxima-

tion property (HAP) provided every subspace

has the approximation property. There are non

Hilbertian spaces that have the HAP [J, ’80],

[Pisier, ’88]. All of these examples are asymp-

totically Hilbertian; i.e., for some K and ev-

ery n, there is a finite codimensional subspace

all of whose n-dimensional subspaces are K-

isomorphic to `n2. An asymptotically Hilbertian

space must be superreflexive and cannot have

a symmetric basis unless it is isomorphic to a

Hilbert space. This led to two problems [J, ’80]:

1. Can a non reflexive space have the HAP?

2. Does there exist a non Hilbertian space with

a symmetric basis which has the HAP?



1. Can a non reflexive space have the HAP?

2. Does there exist a non Hilbertian space with
a symmetric basis which has the HAP?

The HAP is very difficult to work with. It
does not have good permanence properties–
there are spaces X and Y which have the HAP
s.t. X ⊕ Y fails the HAP [Casazza-Garcia-J, ’01].

The main result of [J-Szankowski2, ’08?] gives an
affirmative answer to problem 2 from [J, ’80]:

Theorem. There is a function f(n) ↑ ∞ s.t.
if for infinitely many n we have Dn(X) ≤ f(n),
then X has the HAP.

Here Dn(X) := sup d(E, `n2), where the sup is
over all n-dimensional subspaces of X. The
proof combines the ideas in [J, ’80] with the ar-
gument in [Lindenstrauss-Tzafriri, ’76].

The estimate of f(n) is good enough to show
that `2(X) has the HAP for every weak Hilbert
space X that has an unconditional basis, but it
remains open whether `2(X) has the HAP for
every weak Hilbert space X.



WBJ and B. Zheng, A characterization of sub-

spaces and quotients of reflexive Banach spaces

with unconditional basis.

A problem that goes back to the 1970s is to

give an intrinsic characterization of Banach spaces

that embed into a space that has an uncondi-

tional basis. It was shown that every space

with an unconditional expansion of the iden-

tity (in particular, every space with an uncon-

ditional finite dimensional decompostion) em-

beds into a space with unconditional basis [Pe lczyński-

Wojtaszczyk, ’71], [Lindenstrauss-Tzafriri, ’77].

The only apparent useful invariant is that in

a subspace of a space with unconditional ba-

sis, every WNNS has an unconditional basic

sequence. A quotient of a space with shrink-

ing unconditional basis has this property [J, ’77],

[Odell, ’86]. Also, a reflexive quotient X of a

space with shrinking unconditional basis em-

beds into a space with unconditional basis as

long as X has the approximation property [Feder,

’80].



So there were two problems

1. Give an intrinsic characterization of Banach

spaces that embed into a space that has an

unconditional basis.

2. Does every quotient of a space with shrink-

ing unconditional basis embed into a space

with unconditional basis?

Much research centered around reflexive spaces.

Every reflexive subspace of a space with un-

conditional basis embeds into a reflexive space

with unconditional basis [Davis-Figiel-J-Pe lczyński, ’74],

[Figiel-J-Tzafriri, ’75].

In [J-Zheng, 2007?] both problems are given af-

firmative answers for reflexive spaces (and since

they have given an affirmative answer to (2) in general). The

answers follow from the following theorem:



Theorem. Let X be a separable reflexive Ba-

nach space. Then the following are equivalent.

X has the UTP.

X is isomorphic to a subspace of a Banach

space with an unconditional basis.

X is isomorphic to a subspace of a reflexive

space with an unconditional basis.

X is isomorphic to a quotient of a Banach

space with a shrinking unconditional basis.

X is isomorphic to a quotient of a reflexive

space with an unconditional basis.

X is isomorphic to a subspace of a quotient of

a reflexive space with an unconditional basis.

X is isomorphic to a subspace of a reflexive

quotient of a Banach space with a shrinking

unconditional basis.

X is isomorphic to a quotient of a subspace of

a reflexive space with an unconditional basis.

X is isomorphic to a quotient of a reflexive

subspace of a Banach space with a shrinking

unconditional basis.

X∗ has the UTP.



Definition. [Odell-Schlumprecht] A branch of a tree
is a maximal linearly ordered subset of the tree
under the tree order. We say X has the C-
unconditional tree property (C-UTP) if every
normalized weakly null infinitely branching tree
in X has a C-unconditional branch. X has the
UTP if X has the C-UTP for some C > 0.

The UTP is a strengthening of the property
“every WNNS has an unconditional subsequence”.
The weaker property for a reflexive space does
NOT imply embeddability into a space with
unconditional basis [J-Zh, ’07?].

The proof of the theorem uses some new tricks,
blocking methods developed in the 1970s [J-

Zippin, ’72, ’74], [J-Odell, ’74, 81], [J, ’77], and the analy-
sis in [Odell-Schlumprecht, ’02,’06] relating tree prop-
erties to embeddability into spaces that have a
finite dimensional decomposition with the cor-
responding skipped blocking property.



WBJ and G. Schechtman, Multiplication oper-

ators on L(Lp) and `p-strictly singular opera-

tors

The main positive result in this paper is that

if T is an `p-strictly singular operator on Lp,

1 < p < 2, and T|X is an isomorphism, then X

embeds into Lr for all r < 2. We also give an

example of such a T and X s.t. X is not iso-

morphic to a Hilbert space. At first we thought

that Tε, convolution by an ε-biased coin on Lp

of the Cantor group ∆ := {−1,1}N might be a

counterexample for some p and ε, but it turned

out that Tε can be an isomorphism only on

Hilbertian subspaces of Lp when p > 1. Our ar-

gument allowed us to prove an analogous the-

orem for L1(G) even though Tε is NOT `1-SS

on L1. Namely, if Tε is an isomorphism on a

REFLEXIVE subspace X of L1(G), then X is

isomorphic to a Hilbert space. This answered

a question asked by Rosenthal in 1978.


