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Abstract. Let λ be an infinite cardinal number and let `c∞(λ) denote the subspace of
`∞(λ) consisting of all functions which assume at most countably many non zero values.
We classify all infinite dimensional complemented subspaces of `c∞(λ), proving that they
are isomorphic to `c∞(κ) for some cardinal number κ. Then we show that the Banach
algebra of all bounded linear operators on `c∞(λ) or `∞(λ) has the unique maximal ideal
consisting of operators through which the identity operator does not factor. Using similar
techniques, we obtain an alternative to Daws’ approach description of the lattice of all
closed ideals of B(X), where X = c0(λ) or X = `p(λ) for some p ∈ [1,∞), and we classify
the closed ideals of B(`c∞(λ)) that contain the ideal of weakly compact operators.

1. Introduction and the statements of the main results

The aim of this paper is to contribute to two the closely related programs of classifying
complemented subspaces of Banach spaces and classifying the maximal ideals of (bounded,
linear) operators acting thereon. Our results constitute a natural continuation of the
research undertaken by the authors in [7, 14, 15, 16] concerning the maximal ideals of
the Banach algebras B(X) for certain classical Banach spaces X. From this perspective,
we complement results ([9, 22]) of Gramsch and Luft who classified all closed ideals of
operators acting on Hilbert spaces and a result ([4]) of Daws, who classified all closed ideals
of operators acting on c0(λ) and `p(λ) for λ uncountable and p ∈ [1,∞). Nevertheless,
bearing in mind that the similar problem of classifying all closed ideals of operators acting
on `∞(λ) is most likely intractable (as this would require, in particular, understanding all
injective Banach spaces), we offer instead a complete description of the maximal ideals for
the space `∞(λ) and its closed subspace

`c∞(λ) = {z ∈ `∞(λ) : z(α) 6= 0 for at most countably manyα < λ}.
(For consistency of notation we sometimes denote `∞ by `c∞(ω).) Our first result then
reads as follows.
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Theorem 1.1. Let λ be an infinite cardinal number. Suppose that X is either `∞(λ) or
`c∞(λ). Then

SX(X) = {T ∈ B(X) : T is not bounded below on any copy of X}
= {T ∈ B(X) : IX 6= ATB for all A,B ∈ B(X)}

is the unique maximal ideal of B(X).

(We explain the required notation and terminology in the next section, while proofs are
postponed to the final section.)

Actually, we are able to describe all the closed ideals of `c∞(λ) containg the ideal of
weakly compact operatrs—they consist precisely of operators which do not preserve copies
of `c∞(κ) for some κ not exceeding the cardinal succesor of λ.

Theorem 1.2. Let λ be an infinite cardinal number. Then every closed ideal of B(`c∞(λ))
that contains the ideal of weakly compact operators is equal to S`c∞(κ)(`

c
∞(λ)) for some

infinite cardinal number κ 6 λ+.

Remark. One cannot hope that a statement similar to Theorems 1.2 or 1.5 holds for the
lattice of closed ideals of B(`∞(λ)). Indeed, in general the lattice of closed ideals of
B(`∞(λ)) need not be linearly ordered. Let E1 = L∞({0, 1}ω2) and E2 = `∞(ω1). Then
both E1 and E2 embed into `∞(ω2), but E1 does not embed into E2 and E2 does not embed
into E1 ([28, Theorem 1.7]). Consider the (not necessarily closed) ideals Ji consisting of
operators which admit a factorisation through Ei (i = 1, 2). These sets are obviously closed
under compositions from left and right, and, since Ei ∼= Ei ⊕ Ei (i = 1, 2), they are also
closed under addition, so they are indeed ideals of B(`∞(ω2)). We claim that the closures
of Ji (i = 1, 2) are incomparable. Indeed, let Pi be a projection on `∞(ω2) with range

isomorphic to Ei (i = 1, 2), and suppose that P1 ∈ J2. Since P 2
1 = P1, we actually have

P1 ∈J2 (see [19, Lemma 2.7]). This, however, is impossible because it would imply that
the range of P1 is isomorphic to a subspace of E2. The other case is symmetric.

This observation shows even more: there are 1-injective Banach spaces E of the form
L∞(µ) for which B(E) has more than one maximal ideal. It is readily seen that E = E1⊕E2

is such an example. Here E = L∞(µ), where µ is the direct product measure of the Haar
measure on {0, 1}ω2 with the counting measure on ω1.

A key result in the proof of Theorem 1.1 is the following theorem, which, we believe, is
of interest in itself. In order to state it, we require a piece of terminology.

A Banach space X is complementably homogeneous if for each closed subspace Y of X
such that Y is isomorphic to X, there exists a closed, complemented subspace Z of X
such that Z is contained in Y and Z is isomorphic to X. That `1(λ) is complementably
homogeneous follows directly from Lemma 2.1(ii). The Banach spaces c0(λ) have actually a
stronger property: every isomorphic copy of c0(λ) in c0(λ) is complemented ([2, Proposition
2.8]). For p ∈ (1,∞) complete homogeneity of `p(λ) is also well-known and easy to prove;
we shall include a proof of that fact (Proposition 3.8) for the sake of completeness.

Theorem 1.3. For each infinite cardinal number λ, the Banach space `c∞(λ) is comple-
mentably homogeneous.
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We then employ Theorem 1.3 to characterise, up to isomorphism, all infinite-dimensional
complemented subspaces of `c∞(λ), where λ is any uncountable cardinal number.

Theorem 1.4. Let λ be an infinite cardinal number. Then every infinite dimensional,
complemented subspace of `c∞(λ) is isomorphic either to `∞ or to `c∞(κ) for some cardinal
κ 6 λ. Consequently, `c∞(λ) is a primary Banach space.

Let us remark that `c∞(λ) is a hyperplane in the space E := span {1λ, `c∞(λ)}. The
space E in turn is easily seen to be isomorphic to its hyperplanes as it contains `∞. More
importantly, E is a unital sub-C*-algebra of `∞(λ) (the operations are pointwise), hence by
the Gelfand–Naimark duality, E ∼= C(K) for some compact Hausdorff space K. The space
E has one more incarnation—it is isometrically isomorphic to the space L∞(µ), where µ
is the counting measure on λ restricted to the σ-field of sets that are countable or have
countable complement. The space L∞(µ) is not injective and therefore is not isomorphic
to a dual space. Indeed, it is an observation of Pe lczyński and Sudakov ([24]) that `c∞(λ)
(λ uncountable) is not complemented in `∞(λ), so it is not injective. Since C(K)-spaces
isomorphic to dual spaces are injective, we conclude that L∞(µ) is not a dual space.

It is noteworthy that there are very few kinds of C(K)-spaces with completely understood
complemented subspaces. To the best of our knowledge, these are:

• c0(λ) for any set λ; these spaces are isomorphic to C(λ1) where λ1 is the one-point
compactification of the discrete set λ. Every infinite-dimensional, complemented
subspace of c0(λ) is isomorphic to c0(κ) for some cardinal number κ 6 λ (see [10]
or [2, Proposition 2.8]).
• C[0, ωω], where [0, ωω] carries the order topology. Every infinite-dimensional, com-

plemented subspace of C[0, ωω] is isomorphic either to c0 or to C[0, ωω] ([3, Theorem
3]).

No further separable examples—apart from c0 and C[0, ωω]—of infinite dimen-
sional C(K)-spaces with completely understood complemented subspaces are known.
• C(βN) ∼= `∞. Every infinite-dimensional, complemented subspace of `∞ is isomor-

phic to `∞; this is Lindenstrauss’ theorem ([20]).
• C(K), where K is the compact scattered space constructed by Koszmider under the

Continuum Hypothesis ([17]); it is the Stone space of a Boolean algebra generated
by a certain almost disjoint family of subsets of N. Every infinite-dimensional,
complemented subspace of C(K) is isomorphic either to c0 or C(K).
• Spaces of the form C(K t L) ∼= C(K) ⊕ C(L), where K is scattered, C(L) is a

Grothendieck space (equivalently, every operator from C(L) to a separable space is
weakly compact; for definition and basic properties of Grothendieck spaces see, e.g.,
[5, p. 150]), and all the complemented subspaces of C(K) and C(L) are classified.
(So far, for K we can take the one-point compactification of a discrete set, [0, ωω],
or the above-mentioned space constructed by Koszmider; and for L we can take
βN, so that C(L) is isometrically isomorphic to `∞, a prototypical example of a
Grothendieck space; see [11].) Each complemented subspace of C(K) ⊕ C(L) is
isomorphic to a space of the form X ⊕ Y , where X is a complemented subspace of
C(K) and Y is complemented in C(L).
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Indeed, if K is scattered, then C(K)∗ ∼= `1(|K|), so it follows from [12, Corollary
2] that the unit ball of C(K)∗ is weak*-sequentially compact. Applying [5, Corollary
5 on p. 150], we infer that every operator T : C(L)→ C(K) is weakly compact and
hence strictly singular by [23]. It follows then from [30, Theorem 1.1] that every
complemented subspace of C(K)⊕ C(L) is of the desired form.

We therefore extend the above list by adding the following classes of examples:

• `c∞(λ), for any uncountable cardinal number λ,
• `c∞(λ) ⊕ C(K), where C(K) is isomorphic to one of the spaces c0(κ), C[0, ωω] or

the above-mentioned space constructed by Koszmider. Indeed, for any cardinal
number λ, `c∞(λ) is a Grothendieck space (see Corollary 3.4 below), so we can use
the antepenultimate clause to deduce the claim.

As a by-product of our investigations, we give an alternative approach to Daws’ descrip-
tion of all closed ideals of B(c0(λ)) and B(`p(λ)) for λ uncountable and p ∈ [1,∞).

Theorem 1.5. Let λ be an infinite cardinal number and let p ∈ [1,∞). Then every
non-zero, proper closed ideal of B(c0(λ)) and B(`p(λ)) is of the form Sc0(κ)(c0(λ)) and
S`p(κ)(`p(λ)), respectively, for some infinite cardinal number κ 6 λ.

2. Preliminaries

In this paper, we consider Banach spaces over the fixed scalar field either of real or
complex numbers. Our terminology is standard and follows mainly [1] and [21]. By oper-
ator, we mean a bounded, linear operator acting between Banach spaces. Let X and Y
be Banach spaces. We denote by B(X, Y ) the Banach space of all operators from X to Y
and write B(X) for B(X,X). An operator P ∈ B(X) is a projection if P 2 = P .

Let T : X → Y be an operator. We say that T is bounded below if there is a constant
c > 0 such that ‖Tx‖ > c‖x‖ for all x ∈ X. It is clear an operator is bounded below if
and only if it is injective and has closed range, in which case it is an isomorphism onto its
range.

Let E be a Banach space. We say that an operator T acting between Banach spaces is
bounded below on a copy of E if there exists a subspace E0 of the domain of T such that
E0 is isomorphic to E and the operator T |E0 is bounded below. For each pair of Banach
spaces X, Y we set

SE(X, Y ) = {T ∈ B(X, Y ) : T is not bounded below on any copy of E},
and write SE(X) = SE(X,X). We call operators which belong to SE(X, Y ) E-singular
operators. We denote by SE the class of all E-singular operators acting between arbitrary
Banach spaces. In general, the set SE(X) need not be closed under addition. This is
readily seen in the case where E = X = `p ⊕ `q for 1 6 p < q <∞.

We use von Neumann’s definition of an ordinal number. We identify cardinal numbers
with initial ordinal numbers. For instance, ω1 is the first uncountable ordinal, ω2 is the
second one and so on. If λ is a cardinal and α < λ we often write [0, α) and (α, λ) for
the set of ordinals less than λ which are, respectively, less than α and greater than α.
Even though α and [0, α) are equal, we distinguish these symbols to avoid confusion in the
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situation when we think of α an element of λ and in the situation when it is considered
a subset of it. The cofinality of a cardinal number λ is the minimal cardinality κ of a
family of cardinals strictly less than λ, say {λα : α < κ}, such that λ =

∑
α<κ λα. The

cofinality of ω1 is ω1 while the cofinality of ωω is countable. If Λ is a set, we denote by |Λ|
the cardinality of Λ. For a cardinal number λ, we denote by λ+ its cardinal successor; for
instance ω+

1 = ω2 etc.
For a subset Y of a topological space X we define the density of Y , densY , to be the

minimal cardinality of a dense subset of Y . Let X be a Banach space and let Y ⊆ X
be a closed subspace. We then define the codensity of Y (relative to X) by codensY =
densX/Y .

Let λ be an infinite cardinal and let Eλ denote one of the spaces: c0(λ), `p(λ) (p ∈ [1,∞])
or `c∞(λ). For each subset Λ ⊆ λ the following formula defines a contractive projection PΛ

on Eλ:

(2.1) (PΛf)(α) =

{
f(α), if α ∈ Λ
0, if α /∈ Λ

(f ∈ Eλ).

We then denote the range of PΛ by EΛ. Of course, the range of PΛ is isometrically iso-
morphic to E|Λ|. We denote by RΛ : Eλ → EΛ the restriction operator which identifies an
element f in the range of PΛ with the restriction of f , RΛf , to the set Λ. For f ∈ Eλ we
define the support of f by supp f = {α < λ : f(α) 6= 0}. A function f is supported in a set
Λ if supp f ⊆ Λ.

We shall also require the following lemma due to Rosenthal ([26, Proposition 1.2, Corol-
lary on p. 29 and Remark 1 on p. 30]).

Lemma 2.1. Let λ be an infinite cardinal number and let X be a Banach space.

(i) Suppose that T : `∞(λ) → X is an operator such that T |c0(λ) is bounded below.
Then there exists a set Λ ⊂ λ of cardinality λ such that T |`∞(Λ) is bounded below.
Consequently, if Z is an injective Banach space and T : Z → X is an operator that
is bounded below on a copy of c0(λ), then T is bounded below on a copy of `∞(λ).

(ii) Suppose that T : X → `1(λ) is an operator such that for some δ > 0 and some
bounded set {yα : α < λ} ⊂ X we have

δ 6 ‖Tyα − Tyβ‖ (α, β < λ, α 6= β).

Then T is bounded below on some complemented subspace of X that is isomorphic
to `1(λ).

(iii) Suppose that T : c0(λ)→ X is an operator such that inf{‖Teα‖ : α < λ} > 0, where
{eα : α < λ} is the canonical basis of c0(λ). Then there exists a set Λ ⊂ λ of
cardinality λ such that T |c0(Λ) is bounded below.

We say that a Banach space is primary if whenever X is isomorphic to Y ⊕ Z, then at
least one of the spaces Y or Z is isomorphic to X.
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3. Auxiliary results

Proposition 3.1. Let λ be a cardinal number and let T : `c∞(λ) → `c∞(λ) be an operator
that is not bounded below on any sublattice isometric to c0(λ). Then for every ε > 0 there
is subset Λ of λ so that |Λ| < λ and

‖TRλ\Λ‖ 6 ε.

Consequently, if also T is a projection onto a subspace X, then X is isomorphic to a
complemented subspace of `c∞(κ) for some cardinal number κ < λ.

Proof. Let (fα)α∈Γ be a collection of disjointly supported unit vectors in `c∞(λ) that is
maximal with respect to the property that ‖Tfα‖ > ε for each α. By Lemma 2.1(iii) and
the hypothesis on T we have |Γ| < λ. Let Λ be the union of the supports of the fα (α ∈ Γ),
so that also |Λ| < λ. By the maximality of the collection (fα)α∈Γ, if f is a unit vector
whose support is contained in λ \ Λ, then ‖Tf‖ < ε, which implies that ‖TRλ\Λ‖ 6 ε.

For the “consequently” statement, suppose that T is a projection onto a subspace X.
Then

IX = (TRλ\Λ + TRΛ)|X ,
so

‖(IX − TRA)|X‖ 6 ε.

Hence if ε < 1, there is an operator U on X so that

IX = (UTRA)|X .

Thus IX factors through `c∞(|Λ|). �

Corollary 3.2. Every infinite-dimensional, complemented subspace of `c∞(ω1) that does
not contain a subspace isomorphic to c0(ω1) is isomorphic to `∞.

Proof. Let X be an infinite-dimensional, complemented subspace of `c∞(ω1) that does not
contain a subspace isomorphic to c0(ω1). Let P be any projection onto X. By Proposi-
tion 3.1, X is isomorphic to `c∞(ω) = `∞. �

In view of Corollary 3.2, in order to complete the classification of the complemented
subspaces of `c∞(λ), that is to prove Theorem 1.4, it is enough to show that a complemented
subspace X of `c∞(λ) that contains an isomorphic copy of c0(λ) must be isomorphic to
`c∞(λ). We begin by showing that such an X must contain a subspace isomorphic to
`c∞(λ).

Proposition 3.3. Let κ and λ be infinite cardinal numbers such that κ 6 λ and let
T : `c∞(λ)→ `c∞(λ) be an operator. Suppose that there is a transfinite sequence (xβ)β<κ of
disjointly supported unit vectors in `c∞(λ) so that the restriction of T to span {xβ : β < κ}
is bounded below. Then there is a subspace Y of `c∞(λ) that is isometric to `c∞(κ) such that
T |Y is bounded below.
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Proof. Define an isometry S : `c∞(κ)→ `c∞(λ) by

(Sz)(β) = z(β)xβ (z ∈ `c∞(κ), β < κ).

The assumption on T says that the operator TS : c0(κ)→ `c∞(λ) is bounded below.
Regard `c∞(κ) as the subspace `c∞([0, κ)) of `∞(λ). By injectivity of `∞(λ), the operator

(TS)|c0(κ) has a norm-preserving extension to an operator U : `∞(λ) → `∞(λ) (see [21,
Proposition 2.f.2]). The operator U is an isomorphism on c0(κ), hence by Lemma 2.1(i),
there is a subset Γ of κ with cardinality κ such that the restriction of U to `∞(Γ) is an
isomorphism. But U maps `c∞(Γ) into `c∞(λ), which is to say that TS is an isomorphism
on `c∞(Γ). This implies that Y := S[`c∞(Γ)] is isomorphic to `c∞(κ) and T |Y is bounded
below. �

The following corollary to Proposition 3.3 is essentially known in the sense that it can be
easily deduced from a string of standard results concerning Grothendieck spaces; however,
we offer here a direct proof.

Corollary 3.4. For every cardinal number λ, `c∞(λ) is a Grothendieck space.

Proof. If `c∞(λ) is not a Grothendieck space there exists an operator

T : `c∞(λ)→ c0 ⊂ `c∞(λ)

that is not weakly compact (see [5, p. 150]). Then by [23] there is a subspace Y of `c∞(λ)
isomorphic to c0 such that T |Y is bounded below. Without loss of generality we may assume
that Y is spanned by disjointly supported functions. By Proposition 3.3, T is bounded
below on some subspace isomorphic to `c∞(λ); a contradiction as T maps into c0. �

We need a consequence of [26, Lemma 1.1]

Lemma 3.5. Let Γ be uncountable and let T be an operator on `∞(Γ) such that T is the
identity on c0(Γ). Then for every ε > 0 there is Γ′ ⊂ Γ with |Γ′| = |Γ| so that

‖(RΓ′T )|`∞(Γ′) − I`∞(Γ′)‖ < ε,

where RΓ′ : `∞(Γ)→ `∞(Γ′) is the restriction operator.

Proof. We identify `∞(Γ)∗ with the finitely additive measures on the σ-algebra of all subsets
of Γ. For γ ∈ Γ, set µγ = T ∗δγ, where δγ is the point mass measure at γ. By [26, Lemma
1.1] there is Γ′ ⊂ Γ with |Γ′| = |Γ| so that for all γ ∈ Γ′ we have |µγ|(Γ′ \ {γ}) < ε. �

Proof of Theorem 1.3. We need to show that if X is a subspace of `c∞(λ) isomorphic to
`c∞(λ), then X contains a subspace isomorphic to `c∞(λ) that is complemented in `c∞(λ).

Let l denote the order on X that is induced from its isomorphism with `c∞(λ). From
(the proof of) Proposition 3.1 we have a transfinite sequence {fγ : γ < λ} of unit vectors
in X that are disjoint both relative to the order structure on X given by l and the order
structure on `c∞(λ) given by its pointwise ordering <. Let X be the lattice closure in
(`c∞(λ), <) of the linear span of {fγ : γ < λ} (so that Z is isometrically isomorphic to
`c∞(λ) and there is a norm-one projection Q from `c∞(λ) onto Z). By replacing X itself
with a subspace, we might as well assume that in (X,l) the fγ form the unit vector basis
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for c0(λ) and hence that in (X,l) the space X is the pointwise closure of the fγ. Let
J : (Z,<) → (X,l) denote the natural surjective order isomorphism that is the identity
on the set {fγ : γ < λ}. Now

(JQ)|X : X → X

is an operator on X that is the identity on {fγ : γ < λ}, so by Lemma 3.5 (applied to any
extension of the operator to an operator on the `∞(λ) lattice generated by (X,l)) we have
a subset Λ of λ of cardinality λ so that

(3.1) ‖(RAJQ)|XΛ
− IXΛ

‖ < ε

where XΛ is the pointwise closure of {fγ : γ ∈ Λ} in (X,l), RΛ is the restriction mapping
on (X,l), and ε > 0 can be as small as we want; in particular, ε < 1. So there is
an automorphism U on X so that URΛJQ is the identity on XΛ and hence URΛJQ is
a projection from `c∞(λ) onto XΛ. Since XΛ is isomorphic to `c∞(λ), this completes the
proof. �

The above proof of Theorem 1.3 can be adjusted to get the following stronger result.

Proposition 3.6. Let κ and λ be infinite cardinal numbers. If X is a subspace of `c∞(λ)
that is isomorphic to `c∞(κ), then there is a subspace Y of X that is isomorphic to `c∞(κ)
and complemented in `c∞(λ).

Proposition 3.7. Let λ be an uncountable cardinal number and let E be either c0(λ) or
`p(λ) for some p ∈ (1,∞). Suppose that X = `c∞(λ) in the former case or X = E in the
latter case and let T : E → X be an operator that is not bounded below on any subspace Y
with codensY < λ. Fix ε > 0. Then there exists a subspace Z ⊆ X isomorphic to E such
that ‖T |Z‖ 6 ε.

Proof. Take a unit vector z0 ∈ E such that ‖Tz0‖ < ε. Fix γ < λ and suppose that we have
chosen already a family of unit vectors {zδ : δ < γ} ⊂ E with pairwise disjoint supports
such that ‖Tzδ‖ < ε for all δ < γ and

suppTzδ1 ∩ suppTzδ2 = ∅
for all distinct δ1, δ2 < γ.

Let Γ =
⋃
δ<γ supp zδ. Clearly, |Γ| < λ, so the range of Pλ\Γ (cf. (2.1)) has codensity less

than λ. We claim that there exists a unit vector zγ supported in λ\Γ such that ‖Tzγ‖ < ε
and

suppTzγ ∩
⋃
δ<γ

suppTzδ = ∅.

Assume not. Then there exists a transfinite sequence of unit vectors (wβ)β<λ with with
pairwise disjoint supports contained in λ\Γ such that the set suppTwβ ∩

⋃
δ<γ suppTzδ is

non-empty for each β < λ. This means that there is α < λ which belongs to uncountably
many of the sets suppTwβ and a constant c > 0 such that |(Twβ)(α)| > c. Let wβ1 , wβ2 , . . .
be such that |(Twβn)(α)| > c for all n. Set

yn =
εβ1wβ1 + . . .+ εβnwβn
‖εβ1wβ1 + . . .+ εβnwβn‖

(n ∈ N),
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where εβk = (Twβk)(α)/|(Twβk)(α)| (k = 1, . . . , n).
Then

‖Tyn‖ >
{
cn, ifE = c0(λ),
cn
n1/p , ifE = `p(λ).

In either case ‖Tyn‖ → ∞ as n→∞; a contradiction.
The subspace Z = span{zβ : β < λ} is isomorphic to E and ‖T |Z‖ 6 ε. �

Proposition 3.8. For each uncountable cardinal number λ and p ∈ [1,∞) the Banach
space `p(λ) is complementably homogeneous.

Proof. The case p = 1 is covered by Lemma 2.1(ii). Let us consider then the case where
p ∈ (1,∞).

Let Y be a subspace of `p(λ) isomorphic to `p(λ). Let T : `p(λ)→ Y be an isomorphism
of norm one. We claim that there exists a transfinite sequence {zα : α < λ} of elements
in `p(λ) with pairwise disjoint supports that spans a copy of `p(λ) and such that Tzα
(α < λ) have pairwise disjoint supports. If this were not true, we could proceed exactly as
in the proof of Proposition 3.7 to get a contradiction with boundedness of T . Since T is an
isomorphism, Z = span{Tzα : α < λ} is a copy of `p(λ) in Y . Moreover, it is a standard
fact that such a Z is complemented. Indeed, for each α < λ take wα ∈ `p(λ)∗ such that
〈wα, T zα〉 = 1 = ‖wα‖. Set

Px =
∑
α<λ

〈wα, PsuppTzαx〉Tzα
(
x ∈ `p(λ)

)
.

Then P is a projection whose range is precisely equal to Z. �

Proposition 3.9. Let λ be an infinite cardinal number, p ∈ [1,∞) and let X be a Banach
space. Then the sets

Sc0(λ)

(
X, `c∞(λ)

)
and S`p(λ)

(
X, `p(λ)

)
are closed under addition.

Proof. The case λ = ω follows from [16, Proposition 2.5]. Let us consider the case where
λ is uncountable.

Suppose that T, S are in Sc0(λ)

(
X, `c∞(λ)

)
and assume, in search of contradiction, that

that T +S is not in Sc0(λ)

(
X, `c∞(λ)

)
. Then there exists a subspace X1 ⊆ X isomorphic to

c0(λ) and ε > 0 such that ε‖z‖ 6 ‖(T + S)(z)‖ for all z ∈ X1. By Proposition 3.7, there
exists a subspace Z1 ⊂ X1 isomorphic to c0(λ) such that ‖T |Z1‖ 6 ε

3
. (Formally, we apply

Proposition 3.7 to T |X1 acting on X1 renormed to c0(λ).) Repeating the above argument,
we conclude that there is a subspace Z2 ⊆ Z1 isomorphic to c0(λ) such that ‖S|Z2‖ 6 ε

3
.

Consequently, for all z ∈ Z2 we have

ε‖z‖ 6 ‖Tz + Sz‖ 6 ε

3
‖z‖+

ε

3
‖z‖ =

2

3
ε‖z‖;

a contradiction.
The proof in the case of `p(λ) for p ∈ (1,∞) is analogous. The proof of the case of

p = 1 is actually contained in [26]. Indeed, suppose contrapositively that T, S : X → `1(λ)
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are operators such that T + S is not in S`1(λ)

(
X, `1(λ)

)
. Let Y be a copy of `1(λ) in

X such that (T + S)|Y is an isomorphism. By [26, Theorem 3.3], there is a set of unit
vectors {xα : α < λ} in Y and disjoint sets Eα ⊂ λ (α < λ) such that for some δ > 0
‖((T + S)xα)|Eα‖ > δ. It follows that for some subset Λ ⊆ λ of the cardinality λ and for
either T or S, say T , ‖(Txα)|Eα‖ > δ/2 for all α ∈ Λ. It now follows from [26, Propositions
3.2 and 3.1] that Λ contains a subset Λ′ of the same cardinality such that T is bounded
below on the closed linear span of {xα : α ∈ Λ′}. �

Remark. One can improve a bit the `1-version of the previous proposition: If X contains
an isomorphic copy of `1(λ) then for each ε > 0 it contains a (1 + ε)-isomorphic copy of
`1(λ) that is complemented by means of a projection of norm at most 1 + ε.

This follows from a simple combination of the non-separable counter-part of the James
distortion theorem for `1 ([13], cf. [8]) which provides the (1 + ε)-isomorphic copy of `1(λ)
together with Dor’s result [6, Theorem A] which provides the needed projection.

This remark is provided here because it may be useful in questions related to the clas-
sification of commutators. Similar facts were useful when classifying the commutators in,
say, the algebra of bounded operators on `1.

Proposition 3.9 can be strengthened in the case of c0(λ):

Proposition 3.10. For each infinite cardinal number λ, Sc0(λ) forms a closed operator
ideal.

Proof. Let X and Y be Banach spaces. The set Sc0(λ)(X, Y ) is closed in B(X, Y ) and
obviously is closed under taking compositions with other operators (whenever these make
sense). The only non-trivial thing is to verify that it is indeed closed under addition.

Let T, S ∈ B(X, Y ) be operators such that T + S is bounded below by δ > 0 on some
subspace X0 ⊆ X isomorphic to c0(λ). Let {eα : α < λ} be a transfinite sequence in X0

equivalent to the canonical basis of c0(λ). Since

δ 6 ‖Teα + Seα‖

for all α < λ, there is a set Λ of cardinality λ such that ‖Teα‖ > δ
2

or ‖Seα‖ > δ
2

for all
α ∈ Λ. It follows then from Lemma 2.1(iii) that at least one of the operators T or S does
not belong to Sc0(λ)(X, Y ). �

Theorem 3.11. Let κ and λ be infinite cardinals and let p ∈ [1,∞]. Then then A is a
closed ideal of B if

A = Sc0(κ)(c0(λ)) and B = B(c0(λ));
A = S`p(κ)(`p(λ)) and B = B(`p(λ));
A = S`c∞(κ)(`

c
∞(λ)) and B = B(`c∞(λ)).

Moreover,

S`c∞(κ)(`
c
∞(λ)) = Sc0(κ)(`

c
∞(λ)).

Proof. The first clause as well as the second one in the case of p ∈ [1,∞) follow directly
from Proposition 3.9.
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We claim that S`c∞(κ)(`
c
∞(λ)) = Sc0(κ)(`

c
∞(λ)), which is plainly enough as Proposi-

tion 3.9 asserts that Sc0(κ)(`
c
∞(λ)) is a closed ideal of B(`c∞(λ)). Let us suppose that

T /∈ Sc0(κ)(`
c
∞(λ)). By Proposition 3.3, T is bounded below on some copy of `c∞(κ), hence

T /∈ S`c∞(κ)(`
c
∞(λ)). On the other hand, S`c∞(κ)(`

c
∞(λ)) ⊇ Sc0(κ)(`

c
∞(λ)) trivially, so the

proof of the claim is complete.
Let us consider now the remaining case of A = S`∞(κ)(`∞(λ)) and B = B(`∞(λ)).

Suppose contrapositively that T, S are operators on `∞(λ) such that T+S /∈ Sc0(κ)(`∞(λ)).
Let X ⊆ `∞(λ) be a copy of c0(κ) on which T + S is bounded below. Since Sc0(λ) is an
operator ideal (Proposition 3.10), either T or S is bounded below on some copy of c0(λ).
By Lemma 2.1(i), at least one of those operators is bounded below on a copy of `∞(λ),
which means that either T or S is not in S`∞(κ)(`∞(λ)). �

The next lemma is a counter-part of [4, Proposition 5.1].

Lemma 3.12. Let κ and λ be cardinal numbers and suppose that κ is not a successor of
any cardinal number. If Eλ is one of the spaces c0(λ), `c∞(λ) or `p(λ) for some p ∈ [1,∞),
then ⋃

ρ<κ

SEρ(Eλ) = SEκ(Eλ).

Consequently, if the cofinality of κ is uncountable⋃
ρ<κ

SEρ(Eλ) = SEκ(Eλ).

Proof. Only the inclusion from left to right requires justification.
Take T ∈ SEκ(Eλ). We claim that for each ε > 0 there is a set Λ with |Λ| < κ such

that ‖PΛT − T‖ < ε. We split the proof of this claim into two subcases.

• Let us consider first the case where Eλ = `1(λ) and assume that the assertion
does not hold for some ε > 0. By [26, Theorem 3.3], there is a set of unit vectors
{xα : α < κ} in Y and disjoint sets Eα ⊂ λ (α < κ) such that for some δ ∈ (0, ε) we
have ‖Txα|Eα‖ > δ (α < κ). It now follows from [26, Propositions 3.2 and 3.1] that
κ contains a subset of the same cardinality, K say, such that T is bounded below
on span {xα : α ∈ K} ∼= `1(κ).
• Assume that our assertion is not true in the remaining cases, which means that for

some ε > 0 and all sets Λ with cardinality less than κ we have

‖Pλ\ΛT‖ = ‖PΛT − T‖ > ε.

If Eλ = c0(λ) or Eλ = `p(λ) for some p ∈ (1,∞), this is a contradiction. Indeed, oth-
erwise arguing exactly as in the proof of Proposition 3.7, we would have constructed
a family of disjointly supported unit vectors {zγ : γ < κ} such that {Tzγ : γ < κ}
are also disjointly supported and have norm at least ε/2. In particular, T would be
bounded below on a copy of Eκ against the assumption. For Eλ = `c∞(λ) this is a
contradiction with the last assertion of Proposition 3.11 combined with the already
proved case of c0(λ).
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Since PΛT ∈ SEρ(Eλ) for some ρ < κ, we conclude that T belongs to the closure of the
ideal

⋃
ρ<κ SEρ(Eλ) as desired.

The final assertion follows from the well-known fact that in first-countable spaces in-
creasing unions of uncountably many closed sets that are well-ordered by inclusion are
closed. �

Lemma 3.13. For each uncountable cardinal number we have

W (`c∞(λ)) = S`∞(`∞(λ)),

where W denotes the ideal of weakly compact operators.

Proof. Let T be an operator on `c∞(λ). Then by [23], T is not weakly compact if and only
if T is bounded below on some copy of c0. By Proposition 3.3, being bounded below on a
copy of c0 is equivalent to being bounded below on a copy of `∞ = `c∞(ω). We then have
W (`c∞(λ)) = S`∞(`∞(λ)). �

Lemma 3.14. Let κ and λ be infinite cardinals and let T ∈ B(`c∞). If T /∈ S`c∞(κ)(`
c
∞(λ)),

then S`c∞(κ+)(`
c
∞(λ)) is contained in the ideal generated by T .

Proof. Note that B(`c∞(λ)) is nothing but S`c∞(λ+)(`
c
∞(λ)). (Recall that λ+ denotes the

immediate cardinal successor of λ.) It is then enough to consider only the case where
κ 6 λ. For the simplicity of notation, for any cardinal number κ set Eκ = `c∞(κ).

Fix T /∈ SEκ(Eλ) and let E be a subspace of Eλ isomorphic to Eκ on which T is bounded
below and such that F = T [E] is complemented (such E exists by Proposition 3.6).

Let S ∈ SEκ+ (Eλ). By Lemma 2.1(iii) and Proposition 3.3, we conclude that

|{α < λ : Seα 6= 0}| 6 κ,

so in particular, ∣∣ ⋃
z∈Eλ

suppSz
∣∣ 6 κ.

Consider the set

Γ = [0, κ) ∪
⋃

z∈c0(λ)

suppSz.

It is clear that the range of PΓ is isomorphic to Eκ and PΓS = S. Let W be an operator
such that TWz = z for all z ∈ F . Furthermore, let U : EΓ → F be an isomorphism. Since
both EΓ and F are complemented, U and U−1 can be extended to operators on Eλ. We
shall keep the symbols U,U−1 for fixed extensions of these maps. Consequently,

S = PΓS = U−1TWUPΓS

belongs to the ideal generated by T . �
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4. Proofs of Theorems 1.1, 1.2, 1.4 and 1.5

We are now in a position to prove Theorems 1.1, 1.2, 1.4 and 1.5 (we have already proved
Theorem 1.3 in the previous section).

Proof of Theorem 1.1. The case of λ = ω follows from [21, Proposition 2.f.4] as explained
in [18, p. 253]. Suppose then that λ is uncountable.

The set SX(X) is indeed a closed ideal of B(X) by Theorem 3.11.

• If X = `∞(λ) and T /∈ SX(X), then the range of T contains a (complemented)
copy of `∞(λ), say F .
• If X = `c∞(λ) and T /∈ SX(X), then it follows from Theorem 1.3 that there is a

complemented copy of `c∞(λ), call it F , such that T is bounded below on F and
T [F ] is complemented in X.

In either case, let W be an operator such that TWz = z for all z ∈ F . (The operator
W can be taken to be any extension of (T |F )−1 to the whole space.) Furthermore, let
U : X → F be an isomorphism. Since F is complemented, U−1 can be extended to an
operator on X, say V . Consequently,

IX = V T (WU)

belongs to the ideal generated by T . For this reason, IX = ATB for some A,B ∈ B(X) if
and only if T /∈ SX(X). �

Proof of Theorem 1.2. We keep the notation of the proof of Lemma 3.14.
Let κ be an infinite cardinal. By Lemma 3.14, if T /∈ SEκ(Eλ), then SEκ+ (Eλ) is

contained in the ideal generated by T . We will show that if J is a closed ideal of B(Eλ),
then J = SEκ(Eλ) for some cardinal κ.

Set
τ = sup{ρ : ρ is a cardinal number and SEρ(Eλ) ⊆J }.

This number is well defined as, by Lemma 3.13, J contains W (Eλ) = SEω(Eλ). If the
supremum τ is attained and S ∈J \SEτ (Eλ), then the ideal generated by S, hence J
as well, would contain SE+

τ
(Eλ), which is impossible by the definition of τ . Consequently,

J = SEτ (Eλ). Consider now the case where τ > ρ for each ρ such that SEρ(Eλ) is
contained in J . Since J is closed it contains the closure of

⋃
ρ<κ SEρ(Eλ), which is to

say that SEκ(Eλ) ⊆J by Lemma 3.12. However, if this inclusion were strict SEκ+ (Eλ)
would be contained in J , which would again contradict the definition of τ . �

Proof of Theorem 1.4. Suppose that X is an infinite-dimensional complemented subspace
of `c∞(λ) that is not isomorphic to `∞. By iterating Proposition 3.1, we infer that there
is a cardinal number κ 6 λ such that X is isomorphic to a complemented subspace of
`c∞(κ) and c0(κ) embeds into X. Consequently, Proposition 3.3 applies and so X contains
a subspace isomorphic to `c∞(κ). By Theorem 1.3, X contains a complemented subspace
isomorphic to `c∞(κ). Since `c∞(κ) is isomorphic to `∞(`c∞(κ)), the `∞-sum of countably
many copies of itself, the Pe lczyński decomposition method (cf. [1, Theorem 2.2.3]) yields
that X is isomorphic to `c∞(κ). �
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Proof of Theorem 1.5. Let Eλ denote one of the spaces c0(λ) or `p(λ) for some p ∈ [1,∞).
For λ = ω the result is well-known (see, e.g., [25, Theorem on p. 82]). Suppose then that
λ is uncountable.

Since Eλ has the approximation property, the ideal of compact operators K (Eλ) is the
smallest closed non-zero ideal of B(Eλ) and K (Eλ) = SEω(Eλ) ([25, Theorem on p. 82]).
On the other hand B(Eλ) = SEλ+ (Eλ).

Let κ be an infinite cardinal. All we need to do is to show that if T /∈ SEκ(Eλ), then
SEκ+ (Eλ) is contained in the ideal generated by T . However, the remainder of the proof is
completely analogous to the proof of Theorem 1.2, so we leave the details to the reader. �
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