MATH 152 Exam 3
 Fall 1997
 Version A Solutions

Part I is multiple choice. There is no partial credit. You may not use a calculator.

Part II is work out. Show all your work. Partial credit will be given. You may use your calculator.

Part I: Multiple Choice (5 points each)

There is no partial credit. You may not use a calculator. You have 1 hour.

1. If $f(x, y, z)=x^{2} y \sin z$, then $\frac{\partial^{2} f}{\partial x \partial z}=$
a. $\frac{x y}{z} \sin z$
b. $x^{2} \sin z$
c. $2 x y \sin z+x^{2} y \cos z$
d. $2 x^{3} y^{2} \sin z \cos z$
e. $2 x y \cos z$ correctchoice
$\frac{\partial f}{\partial z}=x^{2} y \cos z \quad \frac{\partial^{2} f}{\partial x \partial z}=2 x y \cos z \quad$ (e)
2. Which pair of vectors is NOT perpendicular?
a. $\boldsymbol{a}=\langle 1,2,3\rangle$ and $\boldsymbol{b}=\langle 3,0,-1\rangle$
b. $\boldsymbol{p}=2 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$ and $\boldsymbol{q}=-\mathbf{i}+\mathbf{j}+\mathbf{k}$ correctchoice
c. $\boldsymbol{A}=-3 \mathbf{i}+2 \mathbf{j}$ and $\boldsymbol{B}=4 \mathbf{i}+6 \mathbf{j}$
d. $\boldsymbol{F}=\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$ and $\mathbf{G}=\mathbf{i}+\mathbf{j}+\mathbf{k}$
e. $\boldsymbol{u}=\langle 3,4\rangle$ and $\boldsymbol{v}=\langle 8,-6\rangle$
$a \cdot b=3-3=0 \quad p \cdot q=-2-4+2=-4 \neq 0$
$A \cdot B=-12+12=0$
$F \cdot G=1+2-3=0 \quad u \cdot v=24-24=0$
(b)
3. A parallelepiped has adjacent edges $\boldsymbol{u}=\langle 2,-1,4\rangle, \boldsymbol{v}=\langle 1,-3,0\rangle$ and $\boldsymbol{w}=\langle 3,1,-2\rangle$. Find its volume.
a. $\langle 12,4,-8\rangle$
b. -12
c. 12
d. 50 correctchoice
e. 54
$u \bullet v \times w=\left|\begin{array}{ccc}2 & -1 & 4 \\ 1 & -3 & 0 \\ 3 & 1 & -2\end{array}\right|=2(6-0)+1(-2-0)+4(1+9)=12-2+40=50$
4. The radius of a cylindrical tin can is 5 cm and the height is 10 cm . The sides are .01 cm thick while the top and bottom are .02 cm thick each. Estimate the volume of metal used to make the can.
a. . $004 \pi \mathrm{~cm}^{3}$
b. $.01 \pi \mathrm{~cm}^{3}$
c. $.02 \pi \mathrm{~cm}^{3}$
d. $2 \pi \mathrm{~cm}^{3}$ correctchoice
e. $250 \pi \mathrm{~cm}^{3}$
$V=\pi r^{2} h \quad r=5 \quad h=10 \quad \Delta r=.01 \quad \Delta h=2(.02)=.04$
$\Delta V \approx \frac{\partial V}{\partial r} \Delta r+\frac{\partial V}{\partial h} \Delta h=2 \pi r h \Delta r+\pi r^{2} \Delta h=2 \pi(5)(10)(.01)+\pi(5)^{2}(.04)=\pi+\pi=2 \pi \mathrm{~cm}^{3}$
(d)
5. Which line is perpendicular to the plane $3 x+4 y+5 z=6$?
a. $\frac{x-3}{2}=\frac{y-4}{3}=\frac{z-5}{4}$
b. $x=3+2 t, \quad y=4+3 t, \quad z=5+4 t$
c. $x=2+3 t, y=3+4 t, z=4+5 t$ correctchoice
d. $\frac{x-2}{20}=\frac{y-3}{15}=\frac{z-4}{12}$
e. $x=2+20 t, y=3+15 t, z=4+12 t$

The tangent to the line is the normal to the plane which by inspection is $v=\langle 3,4,5\rangle$. If $X=(x, y, z)$ is a general point on the line and $P=(a, b, c)$ is a particular point, then the parametric equations are $X=P+t v$ or $x=a+3 t, y=b+4 t, z=c+5 t$ and the symmetric equations are $\frac{x-a}{3}=\frac{y-b}{4}=\frac{z-c}{5}$. The only line with this form is (c).
6. Which of the following is the graph of $f=y^{2}-x^{2}$?
a.

d.

b.

e.

correctchoice
c.

The equation $z=y^{2}-x^{2}$ describes a hyperbolic paraboloid centered on the z-axis which opens up along the y-direction and down along the x-direction. (e)
7. Find the intersection of the line $x=3+2 t, y=2+t, z=1-t$ and the plane $x-y+2 z=4$.
a. $(3,1,1)$
b. $(1,1,2)$ correctchoice
c. $(2,-2,0)$
d. $(-1,1,3)$
e. $(0,2,3)$

Plug the line into the plane and solve for t :

$$
(3+2 t)-(2+t)+2(1-t)=4 \quad 3-t=4 \quad t=-1
$$

Then plug back into the line:
$x=3+2(-1)=1$
$y=2+(-1)=1 \quad z=1-(-1)=2$
(b)
8. For which function are the level curves (or contour plot) shown at the right?

a. $f=x^{2}+y^{2}-2 x$
b. $f=\cos x \cos y$
c. $f=x y$ correctchoice
d. $f=(x+y)^{2}$
e. $f=(x-y)^{2}$

The level curves $x^{2}+y^{2}-2 x=C$ are circles centered at $(1,0)$.
The level curves $\cos x \cos y=C$ are periodic in x and y.
The level curves $x y=C$ are the hyperbolas $y=\frac{C}{x}$ as given above. (c)
The function $f=(x+y)^{2}$ has its zero level set at $y=-x$.
The function $f=(x-y)^{2}$ has its zero level set at $y=x$.
9. An object moves in the $x y$-plane along the curve $y=x^{2}$ from $(-2,4)$ to $(2,4)$. In what direction does the (principal) normal \boldsymbol{N} point when the object is at $(0,0)$?
a. \mathbf{j} correctchoice
b. $\mathbf{i}+\mathbf{j}$
c. $\mathbf{j}-\mathbf{i}$
d. $-\mathbf{j}$
e. i

The graph of $y=x^{2}$ is shown \qquad

The unit tangent T points to the right in the direction of motion.
The unit principal normal N points up in the direction the motion is turning.
So $N=j$.
(a)
10. A triangle has vertices $A=(1,1,-1), B=(2,0,-1)$ and $C=(1,-1,1)$. Find a vector perpendicular to the plane of the triangle.
a. $\langle 1,1,1\rangle$ correctchoice
b. $\langle-2,2,2\rangle$
c. $\langle 1,-1,1\rangle$
d. $\langle 2,2,-2\rangle$
e. $\langle 2,2,0\rangle$

$$
\begin{align*}
& A B=B-A=\langle 1,-1,0\rangle \quad A C=C-A=\langle 0,-2,2\rangle \\
& N=A B \times A C=\left|\begin{array}{ccc}
i & j & k \\
1 & -1 & 0 \\
0 & -2 & 2
\end{array}\right|=i(-2-0)-j(2-0)+k(-2-0)=-2\langle 1,1,1\rangle \tag{a}
\end{align*}
$$

11. A wagon is pulled a distance of 100 m along a horizontal path by a constant force of 50 N exerted along the handle which is at 30° above the horizontal. How much work is done?
a. 5000 J
b. 2500 J
c. $2500 \sqrt{3} \mathrm{~J}$ correctchoice
d. $\frac{10000}{\sqrt{3}} \mathrm{~J}$
e. 10000 J
$W=F \cdot D=|F \| D| \cos \theta=50 \cdot 100 \cdot \cos 30^{\circ}=5000 \cdot \frac{\sqrt{3}}{2}=2500 \sqrt{3} \mathrm{~J}$
(c)

Part II: Work Out

Show all your work. Partial credit will be given.
You may use your calculator but only after 1 hour.
12. (12 points) Consider the curve $\boldsymbol{r}(t)=(t, \sin (2 t), \cos (2 t))$.

Compute each of the following:
a. velocity
$\boldsymbol{v}=\frac{d \boldsymbol{r}}{d t}$

$$
\boldsymbol{v}=\langle 1,2 \cos (2 t),-2 \sin (2 t)\rangle
$$

b. speed

$$
|\boldsymbol{v}|=\sqrt{1+4 \cos ^{2}(2 t)+4 \sin ^{2}(2 t)}=\sqrt{1+4}
$$

$$
|\boldsymbol{v}|=\sqrt{5}
$$

c. arclength between $t=1$ and $t=3$
$L=\int_{1}^{3}|\boldsymbol{v}| d t=\int_{1}^{3} \sqrt{5} d t=[\sqrt{5} t]_{1}^{3}=\sqrt{5}(3-1) \quad L=2 \sqrt{5}$
d. acceleration
$\boldsymbol{a}=\frac{d \boldsymbol{v}}{d t}$

$$
\boldsymbol{a}=\langle 0,-4 \sin (2 t),-4 \cos (2 t)\rangle
$$

e. unit tangent

$$
\boldsymbol{T}=\frac{\boldsymbol{V}}{|\boldsymbol{V}|}=\frac{1}{\sqrt{5}}\langle 1,2 \cos (2 t),-2 \sin (2 t)\rangle \quad \boldsymbol{T}=\left\langle\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \cos (2 t),-\frac{2}{\sqrt{5}} \sin (2 t)\right\rangle
$$

f. curvature

$$
\begin{array}{ll}
\boldsymbol{v} \times \boldsymbol{a} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 \cos (2 t) & -2 \sin (2 t) \\
0 & -4 \sin (2 t) & -4 \cos (2 t)
\end{array}\right| \\
& =\mathbf{i}\left(-8 \cos ^{2}(2 t)-8 \sin ^{2}(2 t)\right)-\mathbf{j}(-4 \cos (2 t))+\mathbf{k}(-4 \sin (2 t))=\langle-8,4 \cos (2 t),-4 \sin (2 t)\rangle \\
|\boldsymbol{V} \times \boldsymbol{a}|=\sqrt{64+16 \cos ^{2}(2 t)+16 \sin ^{2}(2 t)}=\sqrt{64+16}=\sqrt{80}=4 \sqrt{5} \\
\kappa=\frac{|\boldsymbol{V} \times \boldsymbol{a}|}{|\boldsymbol{V}|^{3}}=\frac{4 \sqrt{5}}{\sqrt{5}^{3}} & \kappa=\frac{4}{5} \\
\frac{d \boldsymbol{T}}{d t}=\left\langle 0,-\frac{4}{\sqrt{5}} \sin (2 t),-\frac{4}{\sqrt{5}} \cos (2 t)\right\rangle & \left|\frac{d \boldsymbol{T}}{d t}\right|=\frac{4}{\sqrt{5}} \\
\kappa & =\frac{1}{|\boldsymbol{V}|}\left|\frac{d \boldsymbol{T}}{d t}\right|=\frac{1}{\sqrt{5}} \frac{4}{\sqrt{5}}
\end{array} \quad \kappa=\frac{4}{5} \quad \begin{aligned}
& \text { OR }
\end{aligned}
$$

13. (11 points) Find the plane tangent to the hyperbolic paraboloid $z=2 x^{2}-y^{2}$ at the point ($1,2,-2$). Then identify its z-intercept.

$$
\begin{array}{lrr}
f(x, y)=2 x^{2}-y^{2} & f_{x}(x, y)=4 x & f_{y}(x, y)=-2 y \\
f(1,2)=-2 & f_{x}(1,2)=4 & f_{y}(1,2)=-4 \\
z=f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2) \\
z=-2+4(x-1)-4(y-2)=2+4 x-4 y
\end{array}
$$

At $x=y=0$, the z-intercept is $z=2$.
14. (11 points) A particle has initial position $\mathbf{r}(t)=\langle 0,0\rangle$ and initial velocity $\mathbf{v}(t)=\langle 1,-1\rangle$. If its acceleration is $\mathbf{a}(t)=\left\langle 4 \cos (2 t), 12 t^{2}\right\rangle$, find its position at $t=\pi$.
$\boldsymbol{a}=\frac{d \boldsymbol{v}}{d t} \quad$ So $\boldsymbol{v}=\int \boldsymbol{a} d t=\left\langle 2 \sin (2 t), 4 t^{3}\right\rangle+\boldsymbol{C}$
Use the initial condition: $\quad \mathbf{v}(0)=\boldsymbol{C}=\langle 1,-1\rangle \quad$ So $\boldsymbol{v}=\left\langle 2 \sin (2 t)+1,4 t^{3}-1\right\rangle$
$\boldsymbol{v}=\frac{d \boldsymbol{r}}{d t} \quad$ So $\boldsymbol{r}=\int \boldsymbol{v} d t=\left\langle-\cos (2 t)+t, t^{4}-t\right\rangle+\boldsymbol{K}$
Use the initial condition: $\quad \mathbf{r}(0)=\langle-1,0\rangle+\boldsymbol{K}=\langle 0,0\rangle \quad$ So $\boldsymbol{K}=\langle 1,0\rangle$ and
$\boldsymbol{r}(t)=\left\langle-\cos (2 t)+t+1, t^{4}-t\right\rangle \quad$ Thus, $\boldsymbol{r}(\pi)=\left\langle-1+\pi+1, \pi^{4}-\pi\right\rangle=\left\langle\pi, \pi^{4}-\pi\right\rangle$
15. (11 points) Find the line of intersection of the planes $x+y+z=3$ and $3 x+y-z=1$.

The line of intersection is perpendicular to both normals. The normal to the first plane is $n_{1}=\langle 1,1,1\rangle$ and the normal to the second plane is $n_{2}=\langle 3,1,-1\rangle$. So the tangent to the line of intersection is
$v=n_{1} \times n_{2}=\left|\begin{array}{ccc}i & j & k \\ 1 & 1 & 1 \\ 3 & 1 & -1\end{array}\right|=i(-1-1)-j(-1-3)+k(1-3)=\langle-2,4,-2\rangle$
To find a point on the line of intersection, we set $x=0$ and solve the two plane equations for y and $z: \quad y+z=3 \quad y-z=1$
Add and subtract: $\quad 2 y=4, y=2 \quad 2 z=2, z=1$. So the point is $p=\langle 0,2,1\rangle$.
Thus the line is $X=p+t v$, or $\langle x, y, z\rangle=\langle 0,2,1\rangle+t\langle-2,4,-2\rangle$, or $x=-2 t \quad y=2+4 t \quad z=1-2 t$

OR
Simply set x equal to a parameter,e.g. $x=T$, and solve the two plane equations for y and $z: y+z=3-T \quad y-z=1-3 T$
Add and subtract: $\quad 2 y=4-4 T, y=2-2 T \quad 2 z=2+2 T, z=1+T$
Thus the line is $x=T \quad y=2-2 T \quad z=1+T$
There are many other acceptable forms of the solution differing in the choice of parameter and initial point.

