Spring 2006 Math 152
Exam 3A: Solutions
Mon, 01/May ©2006, Art Belmonte

Notes

e The notation b, | O means 0 < b, 41 < b, and limb,, = 0;
i.e., the sequence {b,} decreases to zero in the limit.

m
Z cknk be a

polynomial in n with ¢,;; > 0. Then li>m v p (n) = 1. This
n [e.9]
boosts the power of the Root Test, which was optionally

covered in some classes. (In most classes, only the Ratio Test
was covered.)

e GFF [“Generalized Fun Fact”]: Let p (n) =

1. (b) Algebraic manipulation gives

Il
5

2. (d) Only the series > 5 (

converges but not absolutely.

e [. The series Z (_—an converges absolutely since
Z lan| =

e II. The series Z (—1)n+l (”n—ng) diverges by the Test

for Divergence since lima, # 0. (Indeed, the limit does
not exist since limsup @, = oo and liminfa, = —00.)

,a convergent p-series (p = 8 > 1).

e III. The alternating series >_ %%ﬂ converges by the

Alternating Series Test since b, = |a,| = \/Lﬁ 1 0.
Note, however, that Slanl = ]1/4 is a divergent
7 < 1. Accordingly, >° 7L

converges, but is not absolutely convergent. (We say it
is conditionally convergent.)

p-series (p =

1 o
1—(—x4):nz_(:)( )

provided |—x4| <lorlx| <1.

3. (b) We have

Z( 1)n 4n

oo
1
4. (d) The series E is a telescoping sum.
n

:ln(n—l—l)

e First do a partial fraction decomposition.

1 A B

n(n+1) T n+1
1 = A(n+1)+Bn
On+1 = (A+B)n+A

ThusA+B—OandA_1whenceB——A:—l.
Theref
ereorezn(nﬂ) z( n+1)

e Now look at the sequence of partial sums to determine
its limit s, the sum of the series.

= 1—%
w = (2=
Sp = l—ﬁ
s= lims, = 1
n— oo

5. (c) Only statement III is true.

e 1. Iflimb, = 0, then >_ b, converges. This is false.
A counterexample is the harmonic series Y %,
a divergent p-series (p = 1 < 1).

o II. If0 < a, < by and > b, diverges, then >_ ay,
diverges. This is false. A countexample is > a, = %

n
and > b, =2 % Note that > %, the harmonic series,
1

diverges. Yet while 0 < g, = ol < % = b,, we see that

an converges (p-series with p =2 > 1).

e III. If > a, converges, then lima, = 0. This is true.
As stated in Section 10.2, this condition is necessary for
a series to converge.

6. (d) Compute the sum of this geometric series via the
Geometric Series Theorem.

N A A A a 2/3  2/3
>5-20) -20)6) -

n=1 n=1
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7. (d) The series z 7 diverges by the Integral Test.
nlnn

Bl | . 11
dx = lim — —dx
3 xlnx t—oo J3 Inx x
Int
= lim —du (subu =Inx)
— 00 In3 U
Int
= lim Inu
t— o0 In3
= lim (In(Int) —In(In3)) = o0
t— 00
1 i 1 1
8. (d) Note that —— < smn < —. Since lim (——) =0and
n n n n—oo n
sinn
lim — =0, we conclude that lim —— = 0 by the
n—oon n—oo n
Squeeze Theorem.
S x2n

9. (c) The series E —— converges for —1 < x < 1 as follows.
n
n=1



e The Ratio Test gives

an+41
Aan

lim

n—oo

xR
= lim | — >
n—>0o\ /n+1 |x|"

lim |x|?
n—o00 1_+

S|—

need
R

= |_x

= |x] <.

Hence the radius of convergence is R = 1.

e [Alternatively, use the Root Test along with the GFF.
As n — oo, we have

P L L
BN

whence |x| < 1and R = 1.]

need
2 <

= |x 1

e At the endpoints x = :I:l the series is > 11/2,

divergent p-series (p = 5 < 1). So the interval of
convergence is I = (—1, 1)

10. (a) The series

,;a Z;‘(1+n)nl’

converges for p > 0 by the Limit Comparison Test.

. Lethn:Z p+1 Then

np—i—l

(e.¢]

nP + np+l
n=1

im & = fim — —

1
Since Z ﬁ
n

p > 0, we conclude by the Limit Comparison Test that

1
— =1>0.

lim

convergesonlyifg =p+1> lor

Z —(1 Fayn? converges only if p > 0. [Brian Winn]
nyn

e Here is an alternative proof that employs repeated use
of the Comparison Test instead.
o0 o0

1 1 1
— First, an’+nl’+1 SZ;nPH :Zn_‘l’
n

n=1
wh1ch converges prov1ded p+1=qg>1lor

p > 0. Therefore, Z converges for

— 1+ n)n?
p > 0 by the Comparison Test.
— Next,

o0

< 1 1 1 1 11
IR D S
nP 4 np+l 1111’+1+111’+1 2 1n1’+1 2 nd

n=1 n= n= n=1

which diverges for p+1=¢g < lorp <0.

o
Therefore, _—
; (1 +n)np
the Comparison Test.
o0

1
— Accordingly, Z —_—
P
= 1+n)n

diverges for p < 0 by

converges only when

p>0.

—-3)"
11. Th E _—
e power series YT
n=

R = 4 and interval of convergence I = [—1, 7).

has radius of convergence

e The Ratio Test gives

At _ i Ix =37t pan
n—o0\ (n + 1)4n+! |x — 3|

an

lim
n—oo

— |x—3] <4

Hence the radius of convergence is R = 4.

[Alternatively, use the Root Test along with the GFF.
As n — oo, we have

MZ |x — 3| _ |x — 3| ne<ed1
4/n 4 ’
whence |[x — 3| <4and R =4.]
e At the left endpoint x = —1, we have the alternating
series (—_nlL"’ which converges by the Alternating
Series Test since b, = |a,| = % 1 0.

At the right endpoint x = 7, we have the harmonic
series rlu a divergent p-series (p =1 < 1).

e So the interval of convergence is I = [—1, 7).

12. (a) The series Z — converges absolutely (and hence

n= 1
converges) by the Ratio Test.

n+1 |
lim |2 = gim (— .
n—oo| ay, n—oo\ (n+ 1)! e
= lim =0<1
n—oo pn + 1
0 n
(b) The alternating series Z ) converges by the
1+1Inn

n=1
1

Alternating Series Test since b, = |-

_ 1
— 1+4Inn i 0.

oo
(c) The series E #{_4 converges by the Comparison
n2.
n=1

Theorem since

- n - n 1
= 2001 4 = 2001 — ,1.001

and > nl% is a convergent p-series (p = 1.001 > 1).

13. Let f (x) = e3* and a = 2. Then f® (x) = 3"¢3* and

£ (2) = 3"¢°. So the Taylor series for f (x) = e3x at
a=2is
o) () 6
AR n_ o 3e n
2 =y = (=2
n=0 n=0



o0 (_1)n Z2n-‘,—1
14. (a) Recall that sinz = E (2—_'_1)'
n .

n=0
2n+1
| o<> (— 1)" )

1
/0 sin (xz) dx = / Gn T )] dx

1 © (—1)" yAn+2
= _— d
/0 entiy

for z € R. Thus

x=1

o0 (_l)n X4n+3
B ( 1)" 14n+3
- (Z @2n+ 1! (4n +3)
_ (="
- né:) @n+ 1! (4n +3)

(b) The Alternating Series Estimation Theorem gives

1 1
R < = — = —
[Rol < larol = 705 = 100

15. (a) One unit vector that is parallel to v =[1, 2, —2] is

.V [1,2,-2] _[1 2 2}

V== = -, =, —=
vl V1+4+4 3’37 3
. oA 1 22
Anotheris —v=|——, —=, = [.
37 33
(b) The vector (parallel) projection of b = [4, 2, 0] onto
a=1[1,—1,1]is
a-b) a
proj,b = (—) —
? lall / llal
_ (4 2—|—0)[1 -1,1]
- \Vi+1+1) 3

2 2 22
= _[1’_19 1]: PR
3 3733




