
Spring 2006 Math 152
Exam 3A: Solutions
Mon, 01/May c©2006, Art Belmonte

Notes

• The notation bn ↓ 0 means 0 < bn+1 ≤ bn and lim bn = 0;
i.e., the sequence {bn} decreases to zero in the limit.

• GFF [“Generalized Fun Fact”]: Let p (n) =
m∑

k=0

cknk be a

polynomial in n with cm > 0. Then lim
n→∞

n
√

p (n) = 1. This
boosts the power of the Root Test, which was optionally
covered in some classes. (In most classes, only the Ratio Test
was covered.)

1. (b) Algebraic manipulation gives

lim
n→∞

(
n2 + 1

n2 sin
(

πn
2n + 1

))

= lim
n→∞

(
1 + 1

n2

1
sin

(
π

2 + 1
n

))

= sin
(π

2

)
= 1.

2. (d) Only the series
∑ (−1)n

4√n
converges, but not absolutely.

• I. The series
∑ (−1)n

n8 converges absolutely since
∑ |an | = ∑ 1

n8 , a convergent p-series (p = 8 > 1).

• II. The series
∑

(−1)n+1
(

n5+2
n3

)
diverges by the Test

for Divergence since lim an (= 0. (Indeed, the limit does
not exist since lim sup an = ∞ and lim inf an = −∞.)

• III. The alternating series
∑ (−1)n

4√n
converges by the

Alternating Series Test since bn = |an | = 1
4√n

↓ 0.

Note, however, that
∑ |an | = ∑ 1

n1/4 is a divergent

p-series (p = 1
4 ≤ 1). Accordingly,

∑ (−1)n

4√n
converges, but is not absolutely convergent. (We say it
is conditionally convergent.)

3. (b) We have
1

1 −
(
−x4

) =
∞∑

n=0

(
−x4

)n
=

∞∑

n=0
(−1)n x4n ,

provided
∣∣−x4∣∣ < 1 or |x | < 1.

4. (d) The series
∞∑

n=1

1
n (n + 1)

is a telescoping sum.

• First do a partial fraction decomposition.

1
n (n + 1)

= A
n

+ B
n + 1

1 = A (n + 1) + Bn
0n + 1 = (A + B) n + A

Thus A + B = 0 and A = 1, whence B = −A = −1.

Therefore,
∞∑

n=1

1
n (n + 1)

=
∞∑

n=1

(
1
n

− 1
n + 1

)
.

• Now look at the sequence of partial sums to determine
its limit s, the sum of the series.

s1 = 1 − 1
2

s2 =
(

1 − 1
2

)
+

(
1
2 − 1

3

)
= 1 − 1

3

...

sn = 1 − 1
n+1

s = lim
n→∞ sn = 1

5. (c) Only statement III is true.

• I. If lim bn = 0, then
∑

bn converges. This is false.
A counterexample is the harmonic series

∑ 1
n ,

a divergent p-series (p = 1 ≤ 1).

• II. If 0 ≤ an ≤ bn and
∑

bn diverges, then
∑

an
diverges. This is false. A countexample is

∑
an = 1

n2

and
∑

bn = ∑ 1
n . Note that

∑ 1
n , the harmonic series,

diverges. Yet while 0 ≤ an = 1
n2 ≤ 1

n = bn , we see that
∑ 1

n2 converges (p-series with p = 2 > 1).

• III. If
∑

an converges, then lim an = 0. This is true.
As stated in Section 10.2, this condition is necessary for
a series to converge.

6. (d) Compute the sum of this geometric series via the
Geometric Series Theorem.
∞∑

n=1

2n

3n =
∞∑

n=1

(
2
3

)n
=

∞∑

n=1

(
2
3

) (
2
3

)n−1
= a

1 − r
= 2/3

1 − 2
3

= 2/3
1/3

= 2

7. (d) The series
∞∑

n=3

1
n ln n

diverges by the Integral Test.

∫ ∞

3

1
x ln x

dx = lim
t→∞

∫ t

3

1
ln x

1
x

dx

= lim
t→∞

∫ ln t

ln 3

1
u

du (sub u = ln x)

= lim
t→∞ ln u

∣∣∣
ln t

ln 3
= lim

t→∞ (ln (ln t) − ln (ln 3)) = ∞

8. (d) Note that −1
n

≤ sin n
n

≤ 1
n

. Since lim
n→∞

(
−1

n

)
= 0 and

lim
n→∞

1
n

= 0, we conclude that lim
n→∞

sin n
n

= 0 by the
Squeeze Theorem.

9. (c) The series
∞∑

n=1

x2n
√

n
converges for −1 < x < 1 as follows.
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• The Ratio Test gives

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

(
|x |2n+2
√

n + 1

√
n

|x |2n

)

= lim
n→∞

√
1

1 + 1
n

|x |2

= |x |2 need
< 1

=⇒ |x | < 1.

Hence the radius of convergence is R = 1.
• [Alternatively, use the Root Test along with the GFF.

As n → ∞, we have

n
√

|an | =
(|x |2n)1/n

n
√√

n
= |x |2

√
n√n

→ |x |2 need
< 1,

whence |x | < 1 and R = 1.]
• At the endpoints x = ±1, the series is

∑ 1
n1/2 , a

divergent p-series (p = 1
2 ≤ 1). So the interval of

convergence is I = (−1, 1).

10. (a) The series

∞∑

n=1

an =
∞∑

n=1

1
(1 + n) n p =

∞∑

n=1

1
n p + n p+1

converges for p > 0 by the Limit Comparison Test.

• Let
∑

bn =
∑ 1

n p+1 . Then

lim
n→∞

an

bn
= lim

n→∞
n p+1

(1 + n) n p = lim
n→∞

1
1 + 1

n
= 1 > 0.

Since
∑ 1

n p+1 converges only if q = p + 1 > 1 or
p > 0, we conclude by the Limit Comparison Test that
∑ 1

(1 + n) n p converges only if p > 0. [Brian Winn]

• Here is an alternative proof that employs repeated use
of the Comparison Test instead.

– First,
∞∑

n=1

1
n p + n p+1 ≤

∞∑

n=1

1
n p+1 =

∞∑

n=1

1
nq ,

which converges provided p + 1 = q > 1 or

p > 0. Therefore,
∞∑

n=1

1
(1 + n) n p converges for

p > 0 by the Comparison Test.
– Next,

∞∑

n=1

1
n p + n p+1 ≥

∞∑

n=1

1
n p+1 + n p+1 = 1

2

∞∑

n=1

1
n p+1 = 1

2

∞∑

n=1

1
nq ,

which diverges for p + 1 = q ≤ 1 or p ≤ 0.

Therefore,
∞∑

n=1

1
(1 + n) n p diverges for p ≤ 0 by

the Comparison Test.

– Accordingly,
∞∑

n=1

1
(1 + n) n p converges only when

p > 0.

11. The power series
∞∑

n=1

(x − 3)n

n 4n has radius of convergence

R = 4 and interval of convergence I = [−1, 7).

• The Ratio Test gives

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

(
|x − 3|n+1

(n + 1) 4n+1
n4n

|x − 3|n

)

= lim
n→∞

(
1

1 + 1
n

)
|x − 3|

4

= |x − 3|
4

need
< 1

=⇒ |x − 3| < 4.

Hence the radius of convergence is R = 4.
• [Alternatively, use the Root Test along with the GFF.

As n → ∞, we have

n
√

|an | = |x − 3|
4 n√n

= |x − 3|
4

need
< 1,

whence |x − 3| < 4 and R = 4.]
• At the left endpoint x = −1, we have the alternating

series
∑ (−1)n

n , which converges by the Alternating
Series Test since bn = |an | = 1

n ↓ 0.
• At the right endpoint x = 7, we have the harmonic

series
∑ 1

n , a divergent p-series (p = 1 ≤ 1).
• So the interval of convergence is I = [−1, 7).

12. (a) The series
∞∑

n=1

en

n!
converges absolutely (and hence

converges) by the Ratio Test.

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

(
en+1

(n + 1)!
· n!

en

)

= lim
n→∞

e
n + 1

= 0 < 1

(b) The alternating series
∞∑

n=1

(−1)n

1 + ln n
converges by the

Alternating Series Test since bn =
∣∣∣ 1

an

∣∣∣ = 1
1+ln n ↓ 0.

(c) The series
∞∑

n=1

n
n2.001 + 4

converges by the Comparison

Theorem since

0 ≤ n
n2.001 + 4

≤ n
n2.001 = 1

n1.001

and
∑ 1

n1.001 is a convergent p-series (p = 1.001 > 1).

13. Let f (x) = e3x and a = 2. Then f (n) (x) = 3ne3x and
f (n) (2) = 3ne6. So the Taylor series for f (x) = e3x at
a = 2 is

∞∑

n=0

f (n) (2)

n!
(x − 2)n =

∞∑

n=0

3ne6

n!
(x − 2)n .
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14. (a) Recall that sin z =
∞∑

n=0

(−1)n z2n+1

(2n + 1)!
for z ∈ R. Thus

∫ 1

0
sin

(
x2

)
dx =

∫ 1

0

∞∑

n=0

(−1)n
(

x2
)2n+1

(2n + 1)!
dx

=
∫ 1

0

∞∑

n=0

(−1)n x4n+2

(2n + 1)!
dx

=




∞∑

n=0

(−1)n x4n+3

(2n + 1)! (4n + 3)





∣∣∣∣∣∣

x=1

x=0

=




∞∑

n=0

(−1)n 14n+3

(2n + 1)! (4n + 3)



 −




∞∑

n=0
0





=
∞∑

n=0

(−1)n

(2n + 1)! (4n + 3)

(b) The Alternating Series Estimation Theorem gives

|R9| ≤ |a10| = 1
102 = 1

100
.

15. (a) One unit vector that is parallel to v = [1, 2, −2] is

v̂ = v
‖v‖ = [1, 2, −2]√

1 + 4 + 4
=

[
1
3
,

2
3
, −2

3

]
.

Another is −v̂ =
[
−1

3
, −2

3
,

2
3

]
.

(b) The vector (parallel) projection of b = [4, 2, 0] onto
a = [1, −1, 1] is

projab =
(

a · b
‖a‖

)
a

‖a‖

=
(

4 − 2 + 0√
1 + 1 + 1

)
[1, −1, 1]√

3

= 2
3

[1, −1, 1] =
[

2
3
, −2

3
,

2
3

]
.
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