Name_____

Final Exam

Spring 2017

Sections 203/204 (circle one)

MATH 152H

P. Yasskin

1-12	/60	15	/12
13	/16	16	/12
14	/10	Total	/110

Multiple Choice: (5 points each. No part credit.)

- **1**. Compute the arclength of the curve $y = \ln(\cos(x))$ between x = 0 and $x = \frac{\pi}{3}$.
 - **a**. $\ln(2-\sqrt{3})$
 - **b**. $\ln(2 + \sqrt{3})$
 - **c.** $\ln\left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)$
 - **d**. $\ln\left(\frac{1}{2} \frac{\sqrt{3}}{2}\right)$
 - **e**. $\ln(\sqrt{3})$

- **2**. Find the surface area swept out when the curve $x = 1 + t^2$ $y = 1 t^2$ is revolved around the *y*-axis for $0 \le t \le 2$.
 - **a**. $3\sqrt{2} \pi$
 - **b**. $4\sqrt{2} \pi$
 - **c**. $6\sqrt{2} \pi$
 - **d**. $12\sqrt{2} \pi$
 - **e**. $24\sqrt{2} \pi$

- **3**. Find the area between $y = x^2 4x$ and $y = 2x x^2$.
 - **a**. 1
 - **b**. 3
 - **c**. 9
 - **d**. 12
 - **e**. 18
- **4.** Compute $\int_{4}^{5} \frac{1}{x^2 5x + 6} dx$
 - **a**. $2 \ln 2 \ln 3$
 - **b**. $\ln 3 2 \ln 2$
 - **c**. ln 3
 - **d**. $2 \ln 3 \ln 2$
 - **e**. $\ln 2 2 \ln 3$

- **5**. The integral $\int_2^\infty \frac{1}{x^2 + x} dx$
 - **a**. diverges by comparison with $\int_2^\infty \frac{1}{x} dx$
 - **b**. converges by comparison with $\int_2^\infty \frac{1}{x} dx$
 - **c**. diverges by comparison with $\int_{2}^{\infty} \frac{1}{x^2} dx$
 - **d**. converges by comparison with $\int_{2}^{\infty} \frac{1}{x^2} dx$
 - e. None of the above

- **6.** Compute $\int_{4}^{5} \frac{1}{x^2 \sqrt{x^2 16}} dx$

 - **a**. $\frac{3}{80}$ **b**. $\frac{9}{80}$
 - **c**. $\frac{3}{160}$ **d**. $\frac{9}{40}$

 - **e**. $\frac{3}{40}$

- 7. Compute $\int_0^1 3x^2 \arctan x \, dx$
 - **a**. $\frac{\pi}{2} + \ln 2 1$
 - **b**. $\frac{\pi}{2} + \frac{1}{2} \ln 2 + \frac{1}{2}$
 - **c.** $\frac{\pi}{4} + \ln 2 1$
 - **d**. $\frac{\pi}{4} + \frac{1}{2} \ln 2 \frac{1}{2}$
 - **e**. $\frac{\pi}{4} + \frac{1}{2} \ln 2 + \frac{1}{2}$

8. Solve the initial value problem
$$\frac{dy}{dx} = 1 + 2x + y^2 + 2xy^2$$
 with $y(1) = 0$. What is $y(2)$?

Factor. HINT:

- \mathbf{a} . tan(1)
- **b**. tan(2)
- **c**. tan(4)
- **e**. $\frac{\pi}{2}$

9. Compute
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^{3n}}$$
.

- **a**. −9
- **b**. -8
- **c**. 8
- **d**. 9
- e. divergent

10. Compute
$$\sum_{n=1}^{\infty} \left[\cos \left(\frac{\pi}{n} \right) - \cos \left(\frac{\pi}{n+1} \right) \right].$$

- **a**. −2
- **b**. -1
- **c**. 1
- **d**. 2
- e. divergent

- **11.** Compute $\lim_{x\to 0} \frac{e^{x^2} \cos x}{x^2}$

 - **a.** $\frac{1}{2}$ **b.** $\frac{3}{2}$ **c.** $\frac{5}{2}$ **d.** $\frac{11}{24}$

- **12**. The series $\sum_{n=2}^{\infty} \frac{1}{n^2 n}$
 - **a**. diverges by a Simple Comparison with $\sum_{n=2}^{\infty} \frac{1}{n}$
 - **b**. converges by a Simple Comparison with $\sum_{n=2}^{\infty} \frac{1}{n}$
 - **c**. converges by a Simple Comparison with $\sum_{n=2}^{\infty} \frac{1}{n^2}$
 - **d**. diverges by a Limit (but not Simple) Comparison with $\sum_{n=2}^{\infty} \frac{1}{n^2}$
 - **e**. converges by a Limit (but not Simple) Comparison with $\sum_{n=0}^{\infty} \frac{1}{n^2}$

Work Out: (Points indicated. Part credit possible. Show all work.)

13. (16 points) Let X(t) be the amount of a radio active element X present at a reactor.

The element X is produced at $100 \frac{\text{kg}}{\text{yr}}$ and decays with a half-life of 20 yrs.

If we start with no element X on hand, then X(t) satisfies the initial value problem

$$\frac{dX}{dt} = 100 - \frac{\ln 2}{20}X \quad \text{with} \quad X(0) = 0$$

a. Solve the initial value problem:

b. How much of element X is present after 20 yrs?

14. (10 points) Use a Maclaurin polynomial to estimate $\sin(1)$ to within 10^{-5} . What theorem guarantees the error in the approximation is less than 10^{-5} ? Do not add up the terms. No decimals!

Note: 0! = 1 1! = 1 3! = 6 5! = 120 7! = 5040 9! = 362880

15. (12 points) Use the Ratio Test to find the radius of convergence of each of the following series:

a.
$$\sum_{n=1}^{\infty} \frac{3^n}{n} (x-4)^n$$

R =

b.
$$\sum_{n=1}^{\infty} \frac{n}{3^n} (x-4)^n$$

R =

c.
$$\sum_{n=1}^{\infty} \frac{3^n}{n!} (x-4)^n$$

R =

d.
$$\sum_{n=1}^{\infty} \frac{n!}{3^n} (x-4)^n$$

R =

16.			$\sum_{n=1}^{\infty} \frac{1}{2^n \sqrt{n}} (x - 3)$) ⁿ has radius	of cor	nvergence	R=2.					
	Find its interval of convergence.											
	Left Endpoin	t: $x =$	Series at	t Left Endpoint:	:	\sum						
	Name and Apply Test for Convergence:					Conclusion (Circle one)						
							Convergent					
							Divergent					

Series at Right Endpoint:

Right Endpoint:

Interval of Convergence:

x =

Name and Apply Test for Convergence:

 \sum

Conclusion (Circle one)

Convergent

Divergent