Name		Sec	
MATH 251 Honors	Final	Spring 2010	
Sections 200	Solutions	P. Yasskin	
Multiple Choice: (5 points each. No part credit.)			

2,4-13	/55	16	/10
14	/21	17	/10
15	/10	Total	/106

1. Honors students, skip this question. Do not bubble anything on the scantron.

- **2**. At the point (x, y, z) where the line $\vec{r}(t) = (1 t, t, 2 2t)$ intersects the plane x 2y + 3z = 16, we have x + y + z =
 - **a**. −2
 - **b**. 2
 - **c**. 3
 - d. 5 Correct Choice
 - **e**. 16

Plug the line into the plane and solve for *t*:

$$(1-t)-2(t)+3(2-2t)=16$$
 $-9t+7=16$ $t=-1$

Plug back into the line:

$$(x,y,z) = (1-t,t,2-2t) = (2,-1,4)$$
 So $x+y+z=5$

3. Honors students, skip this question. Do not bubble anything on the scantron.

- **4**. Find the *z*-intercept of the plane tangent to the surface $\frac{xy}{z} = 1$ at the point (2,3,6).
 - **a**. 6
 - **b**. $\frac{1}{6}$
 - **c**. 5
 - **d**. -5
 - e. -6 Correct Choice

$$F = \frac{xy}{z} \qquad \vec{\nabla}F = \left(\frac{y}{z}, \frac{x}{z}, -\frac{xy}{z^2}\right) \qquad \vec{N} = \vec{\nabla}F \Big|_{(2,3,6)} = \left(\frac{1}{2}, \frac{1}{3}, -\frac{1}{6}\right)$$

$$\vec{N} \cdot X = \vec{N} \cdot P \qquad \frac{1}{2}x + \frac{1}{3}y - \frac{1}{6}z = \frac{1}{2}2 + \frac{1}{3}3 - \frac{1}{6}6 = 1 \qquad \frac{1}{6}z = \frac{1}{2}x + \frac{1}{3}y - 1$$

$$z = 3x + 2y - 6 \qquad z \text{-intercept is} \qquad c = -6.$$

5. The temperature in an ideal gas is given by $T = \kappa \frac{P}{\rho}$ where κ is a constant, P is the pressure and ρ is the density. At a certain point Q = (3,2,1), we have

$$P(Q) = 8$$
 $\vec{\nabla}P(Q) = (4, -2, -4)$

$$\rho(Q) = 2$$
 $\vec{\nabla}\rho(Q) = (-1, 4, 2)$

So at the point Q, the temperature is $T(Q) = 4\kappa$ and its gradient is $\vec{\nabla}T(Q) =$

- **a**. $\kappa(-8.5, 6, 9)$
- **b**. $\kappa(4,-9,-6)$ Correct Choice
- **c**. $\kappa(3, 2, -2)$
- **d**. $\kappa\left(\frac{1}{2},2\right)$
- **e**. $\kappa\left(-\frac{1}{2},2\right)$

By chain rule: (Think about each component separately.)

$$\vec{\nabla}T = \frac{\partial T}{\partial P}\vec{\nabla}P + \frac{\partial T}{\partial \rho}\vec{\nabla}\rho = \frac{\kappa}{\rho}\vec{\nabla}P - \frac{\kappa P}{\rho^2}\vec{\nabla}\rho = \frac{\kappa}{2}(4, -2, -4) - \frac{\kappa 8}{2^2}(-1, 4, 2)$$
$$= \kappa(2, -1, -2) + \kappa(2, -8, -4) = \kappa(4, -9, -6)$$

- **6**. If the temperature in a room is $T = xyz^2$, find the rate of change of the temperature as seen by a fly who is located at (3,2,1) and has velocity (1,2,3).
 - **a**. 32
 - **b**. 36
 - c. 44 Correct Choice
 - **d**. 48
 - **e**. 52

$$\frac{dT}{dt} = \vec{v} \cdot \vec{\nabla} T \Big|_{(3,2,1)} = (1,2,3) \cdot (yz^2, xz^2, 2xyz) \Big|_{(3,2,1)} = (1,2,3) \cdot (2,3,12) = 44$$

- 7. Find the volume below z = xy above the region between the curves y = 3x and $y = x^2$.
 - **a**. $\frac{81}{2}$
 - **b**. $\frac{81}{4}$
 - **c**. $\frac{81}{8}$
 - **d**. $\frac{243}{2}$
 - e. $\frac{243}{8}$ Correct Choice

$$3x = x^2 \implies x = 0,3$$

$$V = \int_0^3 \int_{x^2}^{3x} xy \, dy \, dx = \int_0^3 \left[\frac{xy^2}{2} \right]_{y=y^2}^{3x} dx = \int_0^3 \left(\frac{x9x^2}{2} - \frac{xx^4}{2} \right) dx = \left[\frac{9x^4}{8} - \frac{x^6}{12} \right]_{x=0}^3 = \frac{3^6}{4} \left(\frac{1}{2} - \frac{1}{3} \right) = \frac{243}{8}$$

- **8**. Compute $\iint_C e^{-x^2-y^2} dx dy$ over the disk enclosed in the circle $x^2 + y^2 = 4$.
 - **a**. $\frac{\pi}{2}(1-e^{-4})$
 - **b**. $\pi(1-e^{-4})$ Correct Choice
 - **c**. $\frac{\pi}{2}e^{-4}$
 - **d**. πe^{-4}
 - **e**. $2\pi e^{-4}$

$$\iint e^{-x^2 - y^2} dx \, dy = \int_0^{2\pi} \int_0^2 e^{-r^2} r \, dr \, d\theta = 2\pi \left[-\frac{1}{2} e^{-r^2} \right]_0^2 = \pi (1 - e^{-4})$$

Find the mass of 2 loops of the helical ramp 9. parametrized by

$$\vec{R}(r,\theta)=(r\cos\theta,r\sin\theta,4\theta)\quad\text{for}\quad r\leq 3$$
 if the density is
$$\rho=\sqrt{x^2+y^2}\,.$$

- **a**. 40π
- **b**. 120π
- **c**. 200π
- **d**. $\frac{500}{3}\pi$
- **e**. $\frac{244}{3}\pi$ Correct Choice

$$\vec{e}_r = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ (\cos \theta, & \sin \theta, & 0) \\ \vec{e}_\theta = \begin{vmatrix} (-r\sin \theta, & r\cos \theta & 4) \end{vmatrix}$$

$$\vec{e}_r = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ (\cos\theta, & \sin\theta, & 0) \\ \vec{e}_\theta = \begin{vmatrix} (-r\sin\theta, & r\cos\theta & 4) \end{vmatrix}$$

$$\vec{N} = \vec{e}_r \times \vec{e}_\theta = \hat{\imath}(4\sin\theta) - \hat{\jmath}(4\cos\theta) + \hat{k}(r\cos^2\theta + r\sin^2\theta)$$

$$= (4\sin\theta, -4\cos\theta, r)$$

$$|\vec{N}| = \sqrt{16\sin^2\theta + 16\cos^2\theta + 1} = \sqrt{16 + r^2} \quad \rho = r$$

$$|\vec{N}| = \sqrt{16\sin^2\theta + 16\cos^2\theta + 1} = \sqrt{16 + r^2}$$
 $\rho = r$

$$A = \iint \rho \, dS = \iint \rho \left| \vec{N} \right| \, dr \, d\theta = \int_0^{4\pi} \int_0^3 r \sqrt{16 + r^2} \, \, dr \, d\theta = \frac{4\pi}{3} (16 + r^2)^{3/2} \, \bigg|_0^3 = \frac{4\pi}{3} (125 - 64) = \frac{244}{3} \pi$$

- **10**. Find the flux of $\vec{F} = (y, -x, 2)$ through the helical ramp of problem 9 oriented up.
 - a. 4π
 - **b**. $\frac{8}{3}\pi$
 - **c**. 216π
 - **d**. 108π **Correct Choice**
 - **e**. $\frac{1024}{3}\pi$

$$\vec{F} = (y, -x, 1) = (r\sin\theta, -r\cos\theta, 2) \qquad \vec{F} \cdot \vec{N} = 4r\sin^2\theta + 4r\cos^2\theta + 2r = 6r$$

$$\iint \vec{F} \cdot d\vec{S} = \iint \vec{F} \cdot \vec{N} dr d\theta = \int_0^{4\pi} \int_0^3 6r dr d\theta = 4\pi [3r^2]_0^3 = 108\pi$$

11. Compute
$$\int_{(2,1)}^{(3,2)} \vec{F} \cdot d\vec{s}$$
 for $\vec{F} = (2xy, x^2)$ along the curve $\vec{r}(t) = ((2+t^2)e^{\sin \pi t}, (1+t^2)e^{\sin 2\pi t})$.

HINT: Find a scalar potential.

- 12 a.
- **Correct Choice** b. 14
- **c**. 22
- d. $\sqrt{2}$
- **e**. $15 4\sqrt{2}$

$$\vec{F} = (2xy, x^2) = \vec{\nabla}f \text{ for } f = x^2y \qquad \int_{(2,1)}^{(3,2)} \vec{F} \cdot d\vec{s} = \int_{(2,1)}^{(3,2)} \vec{\nabla}f \cdot d\vec{s} = f(3,2) - f(2,1) = 3^2 2 - 2^2 1 = 14$$

12. Compute $\oint (2x \sin y - 5y) dx + (x^2 \cos y - 4x) dy$ counterclockwise around the cross shown.

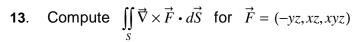
HINT: Use Green's Theorem.

Green's Theorem says
$$\oint_{\partial R} P \, dx + Q \, dy = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy$$

Here $P = 2x \sin y - 5y$ and $Q = x^2 \cos y - 4x$.

So
$$\partial_x Q - \partial_y P = (2x\cos y - 4) - (2x\cos y - 5) = 1.$$

So
$$\iint_R (\partial_x Q - \partial_y P) dx dy = \iint_R 1 dx dy = \text{area} = 5$$



over the quartic surface $z=(x^2+y^2)^2$ for $z\leq 16$ oriented down and out. The surface may be parametrized by

$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^4)$$

HINT: Use Stokes' Theorem.

a.
$$-128\pi$$
 Correct Choice

b.
$$-64\pi$$

c.
$$-32\pi$$

d.
$$32\pi$$

e.
$$64\pi$$

Stokes' Theorem says
$$\iint_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial R} \vec{F} \cdot d\vec{s}.$$

The boundary is the circle $x^2 + y^2 = 4$ with z = 16 which may be parametrized by $\vec{r}(\theta) = (2\cos\theta, 2\sin\theta, 16)$. The velocity is $\vec{v} = (-2\sin\theta, 2\cos\theta, 0)$.

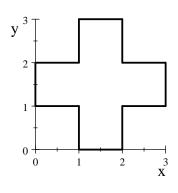
Since the surface is oriented down and out, the circle must be traversed clockwise.

So reverse the velocity: $\vec{v} = (2\sin\theta, -2\cos\theta, 0)$.

$$\vec{F} = (-yz, xz, xyz) \qquad \vec{F}(\vec{r}(\theta)) = (-32\sin\theta, 32\sin\theta, 64\cos\theta\sin\theta)$$

$$\vec{F} \cdot \vec{v} = -64\sin^2\theta - 64\cos^2\theta = -64$$

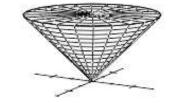
$$\oint_{\partial R} \vec{F} \cdot d\vec{s} = \int_{0}^{2\pi} \vec{F} \cdot \vec{v} d\theta = -\int_{0}^{2\pi} 64 d\theta = -128\pi$$



Work Out: (Points indicated. Part credit possible. Show all work.)

14. (21 points) Verify Gauss' Theorem $\iiint\limits_V \vec{\nabla} \cdot \vec{F} \, dV = \iint\limits_{\partial V} \vec{F} \cdot d\vec{S}$

for the vector field $\vec{F}=(4xz^3,4yz^3,z^4)$ and the solid V above the cone C given by $z=\sqrt{x^2+y^2}$ or parametrized by $R(r,\theta)=(r\cos\theta,r\sin\theta,r),$ below the disk D given by $x^2+y^2\leq 9$ and z=3.



Be sure to check and explain the orientations. Use the following steps:

a. (4 pts) Compute the volume integral by successively finding:

$$\vec{\nabla} \cdot \vec{F}$$
, dV , $\iiint_V \vec{\nabla} \cdot \vec{F} \, dV$

$$\vec{\nabla} \cdot \vec{F} = 4z^3 + 4z^3 + 4z^3 = 12z^3 \qquad dV = rdrd\theta dz$$

$$\iiint_{V} \vec{\nabla} \cdot \vec{F} dV = \int_{0}^{2\pi} \int_{0}^{3} \int_{r}^{3} 12z^3 r dz dr d\theta = 2\pi \int_{0}^{3} [3z^4]_{z=r}^{3} r dr = 2\pi \int_{0}^{3} (3^5 - 3r^4) r dr$$

$$= 2\pi \left[3^5 \frac{r^2}{2} - 3 \frac{r^6}{6} \right]_{r=0}^{3} = 2\pi \left(\frac{3^7}{2} - \frac{3^6}{2} \right) = \pi 3^6 (3 - 1) = 1458\pi$$

b. (8 pts) Compute the surface integral over the disk by parametrizing the disk and successively finding:

$$\vec{R}(r,\theta)$$
, \vec{e}_r , \vec{e}_θ , \vec{N} , $\vec{F}(\vec{R}(r,\theta))$, $\iint_D \vec{F} \cdot d\vec{S}$

$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, 3)$$

$$\vec{e}_r = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ (\cos \theta, & \sin \theta, & 0) \\ \vec{e}_\theta = \end{vmatrix} (-r \sin \theta, & r \cos \theta, & 0)$$

$$\vec{N} = \vec{e}_r \times \vec{e}_\theta = \hat{\imath}(0) - \hat{\jmath}(0) + \hat{k}(r\cos^2\theta + r\sin^2\theta) = (0, 0, r)$$

We need \vec{N} to point up which it does.

$$\vec{F} = (4xz^3, 4yz^3, z^4)$$
 $\vec{F}(\vec{R}(r,\theta)) = (4r\cos\theta \, 27, 4r\sin\theta \, 27, 81)$

$$\iint_{D} \vec{F} \cdot d\vec{S} = \iint_{D} \vec{F} \cdot \vec{N} dr d\theta = \int_{0}^{2\pi} \int_{0}^{3} 81 r dr d\theta = 2\pi \left[81 \frac{r^{2}}{2} \right]_{0}^{3} = 729\pi$$

Recall: $\vec{F} = (4xz^3, 4yz^3, z^4)$ and C is the cone parametrized by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$.

c. (7 pts) Compute the surface integral over the cone *C* by successively finding:

$$\vec{e}_r$$
, \vec{e}_θ , \vec{N} , $\vec{F}(\vec{R}(r,\theta))$, $\iint_C \vec{F} \cdot d\vec{S}$

 $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$

$$\vec{e}_r = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ (\cos \theta, & \sin \theta, & 1) \\ \vec{e}_\theta = \begin{vmatrix} (-r\sin \theta, & r\cos \theta, & 0) \end{vmatrix}$$

$$\vec{N} = \vec{e}_r \times \vec{e}_\theta = \hat{\imath}(-r\cos\theta) - \hat{\jmath}(r\sin\theta) + \hat{k}(r\cos^2\theta + r\sin^2\theta) = (-r\cos\theta, -r\sin\theta, r)$$

We need \vec{N} to point down (out of the volume). Reverse $\vec{N} = (r\cos\theta, r\sin\theta, -r)$

$$\vec{F} = (4xz^3, 4yz^3, z^4) \qquad \vec{F} \Big(\vec{R}(r, \theta) \Big) = (4r\cos\theta \, r^3, 4r\sin\theta \, r^3, r^4)$$

$$\vec{F} \cdot \vec{N} = 4r^5 \cos^2 \theta + 4r^5 \sin^2 \theta - r^5 = 3r^5$$

$$\iint\limits_{P} \vec{F} \cdot d\vec{S} = \iint\limits_{P} \vec{F} \cdot \vec{N} dr d\theta = \int_{0}^{2\pi} \int_{0}^{3} 3r^{5} dr d\theta = 2\pi \left[3 \frac{r^{6}}{6} \right]_{0}^{3} = 2\pi \left(\frac{3^{6}}{2} \right) = 729\pi$$

d. (2 pts) Combine $\iint_D \vec{F} \cdot d\vec{S}$ and $\iint_C \vec{F} \cdot d\vec{S}$ to get $\iint_{\partial V} \vec{F} \cdot d\vec{S}$

$$\iint_{\partial V} \vec{F} \cdot d\vec{S} = \iint_{D} \vec{F} \cdot d\vec{S} + \iint_{C} \vec{F} \cdot d\vec{S} = 729\pi + 729\pi = 1458\pi$$

which agrees with part (a).

15. (10 points) Find the average value of the function $f(x, y, z) = x^2 + y^2 + z^2$ within the solid cylinder $x^2 + y^2 \le 9$ for $0 \le z \le 4$

$$\begin{split} f_{\text{ave}} &= \frac{\iiint f dV}{\iiint 1 \, dV} \qquad \iiint 1 \, dV = \int_0^4 \int_0^{2\pi} \int_0^3 r \, dr \, d\theta \, dz = 36\pi = \pi R^2 H \\ &\iiint f dV = \int_0^4 \int_0^{2\pi} \int_0^3 (r^2 + z^2) r \, dr \, d\theta \, dz = 2\pi \int_0^4 \left[\frac{r^4}{4} + z^2 \frac{r^2}{2} \right]_{r=0}^3 \, dz = 2\pi \int_0^4 \left(\frac{81}{4} + \frac{9}{2} z^2 \right) \, dz \\ &= 2\pi \left[\frac{81}{4} z + \frac{9}{2} \frac{z^3}{3} \right]_{z=0}^4 = 2\pi (81 + 96) = 354\pi \end{split}$$

$$f_{\text{ave}} = \frac{354\pi}{36\pi} = \frac{59}{6}$$

16. (10 points) Find the value(s) of R so that the ellipsoid $\frac{x^2}{4^2} + \frac{y^2}{3^2} + \frac{z^2}{2^2} = R^2$ is tangent to the plane $\frac{1}{2}x + \frac{4}{3}y + 2z = 36$.

HINT: Their normal vectors must be parallel.

Let
$$f = \frac{x^2}{4^2} + \frac{y^2}{3^2} + \frac{z^2}{2^2}$$
 and $g = \frac{1}{2}x + \frac{4}{3}y + 2z$.
 $\vec{\nabla} f = \left(\frac{2x}{4^2}, \frac{2y}{3^2}, \frac{2z}{2^2}\right)$ $\vec{\nabla} g = \left(\frac{1}{2}, \frac{4}{3}, 2\right)$ $\vec{\nabla} f = \lambda \vec{\nabla} g$
 $\frac{2x}{4^2} = \lambda \frac{1}{2}$ $\frac{2y}{3^2} = \lambda \frac{4}{3}$ $\frac{2z}{2^2} = \lambda 2$
 $x = 4\lambda$ $y = 6\lambda$ $z = 4\lambda$
 $36 = \frac{1}{2}x + \frac{4}{3}y + 2z = \frac{1}{2} \cdot 4\lambda + \frac{4}{3} \cdot 6\lambda + 2 \cdot 4\lambda = 18\lambda \implies \lambda = 2$
 $x = 8$ $y = 12$ $z = 8$
 $R^2 = \frac{x^2}{4^2} + \frac{y^2}{3^2} + \frac{z^2}{2^2} = \frac{8^2}{4^2} + \frac{12^2}{3^2} + \frac{8^2}{2^2} = 4 + 16 + 16 = 36 \implies R = 6$

17. (10 points) The equation xy = wz defines a 3-dimensional surface in \mathbb{R}^4 . It may be parametrized by

$$(w, x, y, z) = \vec{R}(u, v, \theta) = (u\cos\theta, u\sin\theta, v\cos\theta, v\sin\theta).$$

Consider the portion S of this 3-surface inside the 3-sphere $w^2 + x^2 + y^2 + z^2 \le 9$.

HINT: What does the 3-sphere equation say about the parameters u, v, and θ ?

a. Find the 3-volume of the 3-surface *S*.

HINT: Successively find \vec{e}_u , \vec{e}_v , \vec{e}_θ , \vec{N} , $|\vec{N}|$, V. Be very careful with signs.

$$\vec{e}_{u} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} & \hat{l} \\ \cos\theta & \sin\theta & 0 & 0 \\ \vec{e}_{v} = \begin{pmatrix} 0 & 0 & \cos\theta & \sin\theta \\ -u\sin\theta & u\cos\theta & -v\sin\theta & v\cos\theta \end{pmatrix}$$

$$\vec{N} = \hat{\imath} \begin{vmatrix} \sin\theta & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ u\cos\theta & -v\sin\theta & v\cos\theta \end{vmatrix} - \hat{\jmath} \begin{vmatrix} \cos\theta & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ -u\sin\theta & -v\sin\theta & v\cos\theta \end{vmatrix} + \hat{k} \begin{vmatrix} \cos\theta & \sin\theta & 0 \\ 0 & 0 & \sin\theta \\ -u\sin\theta & u\cos\theta & v\cos\theta \end{vmatrix} - \hat{l} \begin{vmatrix} \cos\theta & \sin\theta & 0 \\ 0 & 0 & \cos\theta \\ -u\sin\theta & u\cos\theta & v\cos\theta \end{vmatrix}$$

Expand the \hat{i} and \hat{j} determinants on the first row and the \hat{k} and \hat{l} determinants on the second row:

$$\vec{N} = \hat{\imath} \sin \theta \begin{vmatrix} \cos \theta & \sin \theta \\ -v \sin \theta & v \cos \theta \end{vmatrix} - \hat{\jmath} \cos \theta \begin{vmatrix} \cos \theta & \sin \theta \\ -v \sin \theta & v \cos \theta \end{vmatrix}$$
$$- \hat{k} \sin \theta \begin{vmatrix} \cos \theta & \sin \theta \\ -u \sin \theta & u \cos \theta \end{vmatrix} + \hat{l} \cos \theta \begin{vmatrix} \cos \theta & \sin \theta \\ -u \sin \theta & u \cos \theta \end{vmatrix}$$

 $= (v \sin \theta, -v \cos \theta, -u \sin \theta, u \cos \theta)$

$$|\vec{N}| = \sqrt{v^2 \sin^2 \theta + v^2 \cos^2 \theta + u^2 \sin^2 \theta + u^2 \cos^2 \theta} = \sqrt{v^2 + u^2}$$

$$V = \iiint |\vec{N}| du dv d\theta = \iiint \sqrt{v^2 + u^2} du dv d\theta$$

The limits on u and v are determined the 3-sphere equation:

$$w^2 + x^2 + y^2 + z^2 \le 9 \Rightarrow u^2 \cos^2 \theta + u^2 \sin^2 \theta + v^2 \cos^2 \theta + v^2 \sin^2 \theta = u^2 + v^2 \le 9$$

So u and v are constrained to a circle of radius 3 and it is useful to switch to polar coordinates:

$$u = r\cos \varphi$$
 $v = r\sin \varphi$ $du dv = rdr d\varphi$ with $0 \le r \le 3$ $0 \le \varphi \le 2\pi$

$$\sqrt{v^2 + u^2} = r$$

TRICKY PART:

It is tempting to let the range of θ values be $0 \le \theta \le 2\pi$, but this actually double covers the surface.

To see this, notice that the point with $(u, v, \theta) = (a, b, \gamma)$ has rectangular coordinates

$$(w, x, y, z) = (a\cos\gamma, a\sin\gamma, b\cos\gamma, b\sin\gamma)$$

while the point with $(u, v, \theta) = (-a, -b, \gamma + \pi)$ has rectangular coordinates

 $(w,x,y,z) = (-a\cos(\gamma+\pi),-a\sin(\gamma+\pi),-b\cos(\gamma+\pi),-b\sin(\gamma+\pi)) = (a\cos\gamma,a\sin\gamma,b\cos\gamma,b\sin\gamma)$ which is exactly the same point. So either

- i. u and v cover only half of the circle and $0 \le \theta \le 2\pi$, OR
- ii. u and v cover the whole circle and $0 \le \theta \le \pi$ only.

We will use the second option.

So:

$$V = \int_0^{\pi} \int_0^{2\pi} \int_0^3 \sqrt{r^2} \, r \, dr \, d\phi \, d\theta = (\pi)(2\pi) \left[\frac{r^3}{3} \right]_0^3 = 18\pi^2$$

b. Find the flux of $\vec{F} = (z, x - y, -x, w + z)$ through the 3-surface S oriented by your \vec{N} .

HINT: Successively find $\vec{F}(\vec{R}(u,v,\theta))$, $\vec{F} \cdot \vec{N}$, $\iiint \vec{F} \cdot d\vec{V}$.

Recall: The surface is $(w, x, y, z) = \vec{R}(u, v, \theta) = (u \cos \theta, u \sin \theta, v \cos \theta, v \sin \theta)$

$$\vec{F}(\vec{R}(u,v,\theta)) = (z, x-y, -x, w+z) = (v\sin\theta, u\sin\theta - v\cos\theta, -u\sin\theta, u\cos\theta + v\sin\theta)$$

From part (a): $\vec{N} = (v \sin \theta, -v \cos \theta, -u \sin \theta, u \cos \theta)$

$$\vec{F} \cdot \vec{N} = v^2 \sin^2 \theta - v \cos \theta (u \sin \theta - v \cos \theta) + u^2 \sin^2 \theta + u \cos \theta (u \cos \theta + v \sin \theta)$$
$$= v^2 \sin^2 \theta + v^2 \cos^2 \theta + u^2 \sin^2 \theta + u^2 \cos^2 \theta - v \cos \theta (u \sin \theta) + u \cos \theta (v \sin \theta) = v^2 + u^2 = r^2$$

$$\iiint \vec{F} \cdot d\vec{V} = \iiint \vec{F} \cdot \vec{N} du \, dv \, d\theta = \int_0^{\pi} \int_0^{2\pi} \int_0^3 r^2 \, r \, dr \, d\phi \, d\theta = (\pi)(2\pi) \left[\frac{r^4}{4} \right]_0^3 = \frac{81}{2} \pi^2$$