Name_____

MATH 251

Exam 1 Version H

Fall 2017

1-9 /54 11 /16 10 /33 Total /103

Sections 200

P. Yasskin

Multiple Choice: (6 points each. No part credit.)

- 1. The points A = (2, -3.4) and B = (4, 1, 0) are the endpoints of the diameter of a sphere. What is the radius of the sphere?
 - **a**. 6
 - **b**. 5
 - **c**. 4
 - **d**. 3
 - **e**. 2
- **2**. Consider the permutation p = (2, 6, 4, 1, 3, 5). Find its inverse and parity (odd vs. even).
 - **a**. $\bar{p} = (4, 1, 5, 3, 6, 2)$
- $\varepsilon_p = 1$
- **b**. $\bar{p} = (4, 1, 5, 3, 6, 2)$ $\varepsilon_p = -1$
- **c**. $\bar{p} = (2,6,3,5,1,4)$
 - $\varepsilon_p = 1$
- **d**. $\bar{p} = (2,6,3,5,1,4)$
- $\varepsilon_p = -1$
- **e**. $\bar{p} = (5,3,1,4,6,2)$
 - $\varepsilon_p = 1$
- **3**. Find the angle between the normals to the planes 3x + 2y 4z = 3 and 2x y + z = 2.
 - a. 0°
 - **b**. 30°
 - **c**. 45°
 - **d**. 60°
 - **e**. 90°

- **4**. Duke Skywater pushes an asteroid from the point P = (2, -3, 5) to the point Q = (5, -1, 4) by the force $\vec{F} = (4, 1, 2)$. Find the work done to move the asteroid.
 - **a**. 16
 - **b**. 12
 - **c**. 6
 - **d**. 4
 - **e**. 2

- 5. The plot at the right is which polar equation?
 - **a**. $r = 2 + \cos 3\theta$
 - **b**. $r = 2 \cos 3\theta$
 - **c**. $r = 1 + 2\cos 3\theta$
 - $\mathbf{d.} \quad r = 1 2\cos 3\theta$
 - **e**. $r = 1 + \cos 3\theta$

6. In \mathbb{R}^4 , find a vector perpendicular to the hyperplane containing the 4 points

$$P = (2,1,4,1), \quad Q = (-1,3,2,1), \quad R = (3,1,2,2) \quad \text{and} \quad S = (3,1,4,1)$$

- **a**. (-1,2,2,-4)
- **b**. (1,2,2,4)
- **c**. (0,2,2,4)
- **d**. (1,-2,2,-4)
- **e**. (0,-2,2,-4)

- 7. If $|\vec{u}| = 2$ and $|\vec{v}| = 5$ and $\vec{u} \cdot \vec{v} = 6$ find $|\vec{u} \times \vec{v}|$.
 - **a**. 8
 - **b**. 6
 - **c**. 4
 - **d**. 2
 - **e**. 0

8. The plot at the right is the graph of which equation?

b.
$$x^2 + y^2 - z^2 = 0$$

c.
$$x^2 + y^2 - z^2 = -1$$

d.
$$x^2 + y^2 - z = 1$$

e.
$$x^2 + y^2 - z = -1$$

9. Find the point where the line $(x,y,z) = \vec{r}(t) = (2t+1,t-1,2t-1)$ intersects the plane 3x + 2y + z = 20.

At this point x + y + z =

- **a**. -6
- **b**. -1
- **c**. 4
- **d**. 9
- **e**. 13

Work Out: (Points indicated. Part credit possible. Show all work.)

	For the parametric curve $\vec{r}(t) = \left(\frac{2}{t}, 6t, 3t^3\right)$ computed velocity \vec{v}	te each of the following:
b . (3 pts)	acceleration \vec{a}	$\vec{v} = $
c . (3 pts)	jerk \vec{j}	$\vec{a} = \underline{\hspace{1cm}}$
	speed $ \vec{v} $ (Simplify!) The quantity inside the square root is a perfect square	$\overrightarrow{j}=$
		$ \vec{v} = $
e . (3 pts)	tangential acceleration a_T	
f . (4 pts)	unit binormal \hat{B} (Do this last.)	$a_T = \underline{\hspace{1cm}}$

 $\hat{B} =$

Recall: $\vec{r}(t) = \left(\frac{2}{t}, 6t, 3t^3\right)$

g. (2 pts) the values of t where the curve passes thru the points

$$A = (2,6,3)$$

$$B = (1, 12, 24)$$

h. (4 pts) arc length between (2,6,3) and (1,12,24), $L = \int_{(2,6,3)}^{(1,12,24)} ds$

L = _____

i. (4 pts) A wire has the shape of this curve between (2,6,3) and (1,12,24). Find the mass of the wire if the linear mass density is $\rho = \frac{1}{6}xz$. (Don't simplify the answer.)

M =

j. (4 pts) A wire has the shape of this curve. Find the work done by the force $\vec{F} = (z, y, x)$ which pushes a bead along the wire from (2,6,3) to (1,12,24).

W =

- **11**. (16 points) Are the following lines parallel, intersecting or skew? If they intersect, find the point of intersection.
 - **a**. Line 1: $\vec{r}_1(t) = (t+2, t-2, 2t-1)$

Line 2:
$$\vec{r}_2(t) = (t+1, 2t-6, 2t-1)$$

b. Line 1: $\vec{r}_1(t) = (t+2, t-2, 2t+1)$

Line 2:
$$\vec{r}_2(t) = (t+1, 2t-6, 2t-1)$$