Name_

MATH 251

Exam 2 Version H

Fall 2017

Sections 200

Solutions

P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-13	/65	15	/15
14	/15	16	/15
		Total	/110

1. Find the equation of the plane tangent to $z = x^2y + xy^2$ at (x,y) = (1,2). The *z*-intercept is:

a.
$$c = -6$$

b.
$$c = 6$$

c.
$$c = -12$$
 Correct Choice

d.
$$c = 12$$

e.
$$c = -24$$

Solution: a = 1 and b = 2.

$$f = x^2y + xy^2$$
 $f(1,2) = 6$

$$f_x = 2xy + y^2$$
 $f_x(1,2) = 8$

$$f_y = x^2 + 2xy$$
 $f_y(1,2) = 5$

So the tangent plane is

$$z = f(1,2) + f_x(1,2)(x-1) + f_y(1,2)(y-2)$$

= 6 + 8(x - 1) + 5(y - 2)
= 8x + 5y - 12

So the *z*-intercept is c = -12.

2. Find the plane tangent to the ellipsoid $36x^2 + 9y^2 + 4z^2 = 108$ at the point (x, y, z) = (1, 2, 3).

a.
$$6x + 3y + 2z = 18$$
 Correct Choice

b.
$$\frac{x}{6} + \frac{y}{3} + \frac{z}{2} = \frac{7}{3}$$

c.
$$6x + 12y + 18z = 84$$

d.
$$\frac{x}{6} + \frac{y}{12} + \frac{z}{18} = \frac{1}{2}$$

e.
$$36x + 9y + 4z = 18$$

Solution:
$$F = 36x^2 + 9y^2 + 4z^2$$

$$\vec{\nabla}F = \langle 72x, 18y, 8z \rangle$$

Solution:
$$F = 36x^2 + 9y^2 + 4z^2$$
 $\vec{\nabla}F = \langle 72x, 18y, 8z \rangle$ $\vec{N} = \vec{\nabla}F \Big|_{(1,2,3)} = \langle 72, 36, 24 \rangle$

The plane is $\vec{N} \cdot X = \vec{N} \cdot P$ which is

$$\langle 72, 36, 24 \rangle \boldsymbol{\cdot} (x, y, z) = \langle 72, 36, 24 \rangle \boldsymbol{\cdot} (1, 2, 3)$$

$$72x + 36y + 24z = 216$$

$$6x + 3y + 2z = 18$$

- 3. If $f(x,y) = x\cos(y) + y\sin(x)$, which of the following is INCORRECT?
 - $a. f_x = \cos(y) + y\cos(x)$
 - **b**. $f_y = -x\sin(y) + \sin(x)$
 - $\mathbf{c}. \ f_{xx} = -y\sin(x)$
 - **d**. $f_{xy} = \sin(y) + \cos(x)$ Correct Choice
 - $e. f_{yx} = -\sin(y) + \cos(x)$

Solution: $f_{xy} = f_{yx}$ So one of those must be wrong. It's f_{xy} because $[\cos(y)]' = -\sin(y)$.

- **4.** A support beam is constructed using four struts whose lengths are w, x, y and z. The strength of the beam is $S = w^2x + y^2z$. If the current lengths are w = 1, x = 3, y = 2 and z = 1, then the current strength is $S = 1^23 + 2^21 = 7$. Use differentials (i.e. the linear approximation) to estimate how much the strength increases, ΔS , if the lengths increase by $\Delta w = 0.1$, $\Delta x = 0.2$, $\Delta y = 0.2$ and $\Delta z = 0.3$.
 - **a**. 3.5
 - **b.** 2.8 Correct Choice
 - **c**. 2.1
 - **d**. 1.4
 - **e**. 0.8

Solution:

$$\Delta S \approx dS = \frac{\partial S}{\partial w} dw + \frac{\partial S}{\partial x} dx + \frac{\partial S}{\partial y} dy + \frac{\partial S}{\partial z} dz$$

$$= 2wx dw + w^{2} dx + 2yz dy + y^{2} dz$$

$$= 6(0.1) + 1(0.2) + 4(0.2) + 4(0.3) = .6 + .2 + .8 + 1.2 = 2.8$$

- 5. In the coutour plot at the right, which point is the saddle point?
 - **a**. (1.5,3.5)
 - **b**. (5,-1)
 - **c**. (3.5,1.5) Correct Choice
 - **d**. (5,-3.5)
 - **e**. (-1.5, -3.5)

Solution: (a), (d) and (e) are in the middle of "circles", so they are maxima or minima. (b) is in "parallel lines", so it's a sloped area. (c) is in the middle of "hyperbolas", so it is the saddle point.

- **6**. Use the linear approximation to the function $f(x,y) = \sqrt{x^2 + y^2}$ to estimate $\sqrt{3.9^2 + 3.2^2}$.
 - **a**. 5.73
 - **b**. 5.40
 - **c**. 5.10
 - d. 5.04 Correct Choice
 - **e**. 5.02

Solution:
$$f(x,y) = \sqrt{x^2 + y^2}$$
 $f(4,3) = \sqrt{4^2 + 3^2} = 5$
 $f_x(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$ $f_x(4,3) = \frac{4}{\sqrt{4^2 + 3^2}} = \frac{4}{5}$
 $f_y(x,y) = \frac{y}{\sqrt{x^2 + y^2}}$ $f_y(4,3) = \frac{3}{\sqrt{4^2 + 3^2}} = \frac{3}{5}$
 $f_{tan}(x,y) = f(4,3) + f_x(4,3)(x-4) + f_y(4,3)(y-3) = 5 + \frac{4}{5}(x-4) + \frac{3}{5}(y-3)$
 $\sqrt{3.9^2 + 3.2^2} = f(3.9,3.2) \approx f_{tan}(3.9,3.2) = 5 + .8(-.1) + .6(.2) = 5.04$

7. A weather balloon is currently located at (x,y,z) = (20,30,10) and has velocity $\vec{v} = (3,1,2)$. At the current time, it measures that the pressure is P = .96 atm and has gradient

$$\vec{\nabla}P = \left\langle \frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial P}{\partial z} \right\rangle = \langle .01, .02, .03 \rangle$$

Find the rate of change of the pressure as seen aboard the balloon.

- **a**. 0.12
- **b**. 0.11 Correct Choice
- **c**. 0.10
- **d**. 0.09
- **e**. 0.08

Solution: $\frac{dP}{dt} = \vec{v} \cdot \vec{\nabla} P = 3(.01) + 1(.02) + 2(.03) = 0.11$

- **8**. Ham Duet is flying the Centurion Eagle through a nebula where the density of cloaking sparkles is $\delta = xyz$. If Ham's current position is P = (1,1,2), find the rate of change of the density in the direction toward the point Q = (-1,3,3).
 - **a**. $\frac{1}{3}$ Correct Choice
 - **b**. $\frac{2}{3}$
 - **c**. 1
 - **d**. $\frac{4}{3}$
 - **e**. $\frac{5}{3}$

Solution: Since we want the direction toward Q, we need the directional derivative of δ using a unit vector. The vector from P to Q is $\overrightarrow{PQ} = Q - P = (-2, 2, 1)$. Its magnitude and direction are

$$\left| \overrightarrow{PQ} \right| = \sqrt{4+4+1} = 3$$
 $\widehat{PQ} = \frac{\overrightarrow{PQ}}{\left| \overrightarrow{PQ} \right|} = \left\langle \frac{-2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle$

The gradient of the density is $\vec{\nabla}\delta = \langle yz, xz, xy \rangle$. At P this is $\vec{\nabla}\delta \Big|_P = \langle 2, 2, 1 \rangle$. So the directional derivative is

$$\nabla_{\widehat{PQ}}\delta = \widehat{PQ} \cdot \vec{\nabla}\delta = \left\langle \frac{-2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle \cdot \langle 2, 2, 1 \rangle$$
$$= \frac{1}{3}(-4 + 4 + 1) = \frac{1}{3}$$

- **9**. Ham Duet is flying the Centurion Eagle through a nebula where the density of cloaking sparkles is $\delta = xyz$. If Ham's current position is P = (1,1,2), in what unit vector direction should he travel to increase the cloaking sparkles as fast as possible?
 - **a**. $\left\langle -\frac{2}{3}, -\frac{2}{3}, \frac{1}{3} \right\rangle$
 - **b**. $\left\langle \frac{2}{3}, -\frac{2}{3}, -\frac{1}{3} \right\rangle$
 - **c**. $\left\langle -\frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle$
 - **d**. $\left\langle -\frac{2}{3}, \frac{2}{3}, -\frac{1}{3} \right\rangle$
 - **e**. $\left\langle \frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle$ Correct Choice

Solution: The direction of maximum increase is the direction of the gradient.

$$\vec{\nabla}\delta = \langle yz, xz, xy \rangle \qquad \vec{\nabla}\delta \Big|_{P} = \langle 2, 2, 1 \rangle \qquad \left| \vec{\nabla}\delta \right| = \sqrt{4 + 4 + 1} = 3$$

$$\hat{u} = \frac{\vec{\nabla}\delta}{\left| \vec{\nabla}\delta \right|} = \frac{1}{3} \langle 2, 2, 1 \rangle = \left\langle \frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle$$

10. If $\vec{F} = \langle x^2y, y^2z, z^2x \rangle$, then $\vec{\nabla} \cdot \vec{F} =$

a.
$$-y^2 - z^2 - x^2$$

b. 2xy + 2yz + 2zx Correct Choice

c.
$$2xy - 2yz + 2zx$$

d.
$$\langle 2xy, 2yz, 2zx \rangle$$

e.
$$\langle 2xy, -2yz, 2zx \rangle$$

Solution: $\vec{\nabla} \cdot \vec{F} = \partial_x(x^2y) + \partial_y(y^2z) + \partial_z(z^2x) = 2xy + 2yz + 2zx$

11. If $\vec{F} = \langle x^2 y, y^2 z, z^2 x \rangle$, then $\vec{\nabla} \times \vec{F} =$

a.
$$-v^2 + z^2 - x^2$$

b.
$$\langle -y^2, z^2, -x^2 \rangle$$

c.
$$\langle -y^2, -z^2, -x^2 \rangle$$
 Correct Choice

d.
$$\langle 2xy, 2yz, 2zx \rangle$$

e.
$$\langle 2xy, -2yz, 2zx \rangle$$

Solution: $\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \partial_x & \partial_y & \partial_z \\ x^2 y & y^2 z & z^2 x \end{vmatrix} = \hat{\imath}(0 - y^2) - \hat{\jmath}(z^2 - 0) + \hat{k}(0 - x^2) = \langle -y^2, -z^2, -x^2 \rangle$

12. If $\vec{F} = \langle x^2y, y^2z, z^2x \rangle$, then $\vec{\nabla} \cdot \vec{\nabla} \times \vec{F} =$

a.
$$-y^2 - z^2 - x^2$$

b.
$$-y^2 + z^2 - x^2$$

c.
$$2y - 2z + 2x$$

d.
$$2y + 2z + 2x$$

e. 0 Correct Choice

Solution: $\vec{\nabla} \cdot \vec{\nabla} \times \vec{F} = 0$ for any vector field with continuous second derivatives.

13. Find a scalar potential, f, for the vector field $\vec{F} = \langle yz + 6x, xz - 4y, xy \rangle$.

Then
$$f(2,2,2) - f(1,1,1) =$$

- **a**. 1
- **b**. 2
- **c**. 5
- **d**. 10 **Correct Choice**
- **e**. 15

Solution: To solve $\vec{\nabla} f = F$, we must solve $\partial_x f = yz + 6x$, $\partial_y f = xz - 4y$, $\partial_z f = xy$.

The first says $f = xyz + 3x^2 + g(y,z)$. Then the second says $\partial_y f = xz + \partial_y g = xz - 4y$.

So $g = -2y^2 + h(z)$, or $f = xyz + 3x^2 - 2y^2 + h(z)$. Then the third says $\partial_z f = xy + h'(z) = xy$.

So h = C. Consequently, $f = xyz + 3x^2 - 2y^2 + C$.

$$f(2,2,2) - f(1,1,1) = (8+12-8) - (1+3-2) = 10$$

Work Out: (15 points each. Part credit possible. Show all work.)

14. (15 points) Find all critical points of the function $f(x,y) = x^3 - 12x + 3xy^2$. Then use the second derivative test to classify each as a

local minimum, local maximum or saddle or say the test fails.

Solution: $f_x = 3x^2 - 12 + 3y^2 = 0$ $f_y = 6xy = 0$

formula $f_x = 3x + 2$ for $f_y = 6xy = 0$ leads to 2 cases:

Case 1: $f_y = 6xy = 0$ leads to 2 cases:

Case 2: $f_x = -12 + 3y^2 = 0$ \Rightarrow $f_x = -12 + 3y^2 = 0$ \Rightarrow $f_x = 2x + 2$ \Rightarrow critical points: (0,2), (0,-2) \Rightarrow critical points: (2,0), (-2,0)

$$f_{xx} = 6x \qquad \qquad f_{yy} = 6x \qquad \qquad f_{xy} = 6y$$

x	у	f_{xx}	f_{yy}	f_{xy}	D	Classification
0	2	0	0	12	-144	saddle
0	-2	0	0	-12	-144	saddle
2	0	12	12	0	144	local minimum
-2	0	-12	-12	0	144	local maximum

15. (15 points) For each limit, either prove the limit does not exist or prove it does exist and give its limit.

a.
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$$

Solution: Switch to polar coordinates: $x = r\cos\theta$ $y = r\sin\theta$

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^2} = \lim_{r\to 0} \frac{r^3 \cos\theta \sin^2\theta}{r^2} = \lim_{r\to 0} r \cos\theta \sin^2\theta$$

Since $r \to 0$ and $\cos \theta \sin^2 \theta$ is bounded, the limit is 0.

More precisely, since $-1 \le \cos\theta \sin^2\theta \le 1$, we have $-r \le r\cos\theta \sin^2\theta \le r$.

Since $\lim_{r\to 0} (-r) = \lim_{r\to 0} (r) = 0$, by the pinching theorem, $\lim_{r\to 0} r\cos\theta\sin^2\theta = 0$ also.

b.
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$

Solution:
$$\lim_{y=mx} \frac{xy^2}{x^2 + y^4} = \lim_{x \to 0} \frac{xm^2x^2}{x^2 + m^4x^4} = \lim_{x \to 0} \frac{xm^2}{1 + m^4x^2} = \frac{0}{1} = 0$$

$$\lim_{\substack{x=y^2 \\ x \to 0}} \frac{xy^2}{x^2 + y^4} = \lim_{y \to 0} \frac{y^2 y^2}{y^4 + y^4} = \frac{1}{2}$$

Since the limit is different from 2 directions, the limit does not exist.

16. (15 points) Find the point on the plane 2x - 2y - z = 18 that is closest to the origin. You may use either the Eliminate a Variable method or the Lagrange Multiplier method.

Solution 1: Eliminate a Variable Method:

We minimize the square of the distance:

$$f = D^2 = x^2 + y^2 + z^2$$

subject to the constraint z = 2x - 2y - 18. We substitute the constraint into f:

$$f = x^2 + y^2 + (2x - 2y - 18)^2$$

We set the x and y derivatives equal to 0 and solve for x and y.

$$f_x = 2x + 4(2x - 2y - 18) = 10x - 8y - 72 = 0$$

$$f_v = 2y - 4(2x - 2y - 18) = -8x + 10y + 72 = 0$$

Equivalently:

$$5x - 4y = 36$$

$$-4x + 5y = -36$$

Multiply the first equation by 4 and the second equation by 5 and add:

$$20x - 16y = 144$$

$$-20x + 25y = -180$$

$$9y = -36$$
 \Rightarrow $y = -4$

We substitute back:

$$5x - 4(-4) = 36 \qquad \Rightarrow \qquad x = 4$$

$$z = 2(4) - 2(-4) - 18 = -2$$

So the closest point is (x,y,z) = (4,-4,-2).

Solution 2: Lagrange Multiplier Method:

We minimize the square of the distance:

$$f = D^2 = x^2 + y^2 + z^2$$

subject to the constraint g = 2x - 2y - z = 18. The gradients are:

$$\vec{\nabla} f = \langle 2x, 2y, 2z \rangle$$
 $\vec{\nabla} g = \langle 2, -2, -1 \rangle$

The Lagrange equations $\vec{\nabla} f = \lambda \vec{\nabla} g$ are

$$2x = 2\lambda$$
 $2y = -2\lambda$ $2z = -\lambda$

Consequently, $\lambda = x = -y = -2z$. We substitute these into the constraint:

$$18 = 2x - 2y - z = -4z - 4z - z = -9z \implies z = -2$$

So x = 4 and y = -4. So the closest point is (x,y,z) = (4,-4,-2).