Name____

MATH 251	Final Exam Version B	Fall 2017
Sections 515	Solutions	P. Yasskin

/15	13	/50	1-10
/15	14	/ 5	11
/105	Total	/20	12

Multiple Choice: (5 points each. No part credit.)

- 1. A wire has the shape of the helix curve $\vec{r}(\theta) = (4\cos\theta, 4\sin\theta, 3\theta)$ for $0 \le \theta \le \pi$ and has linear density $\delta = 2y$. Find the total mass of the wire.
 - a. 80 Correct Choice
 - b. 60
 - c. 40
 - d. 20
 - e. 10

Solution:
$$\delta = 2y = 8 \sin \theta$$

 $\vec{v} = (-4 \sin \theta, 4 \cos \theta, 3)$ $|\vec{v}| = \sqrt{16 \sin^2 \theta + 16 \cos^2 \theta + 9} = 5$ $ds = |\vec{v}| d\theta = 5 d\theta$
 $M = \int \delta ds = \int_0^{\pi} 2y |\vec{v}| d\theta = \int_0^{\pi} 8 \sin \theta 5 d\theta = 40 - \cos \theta \Big|_0^{\pi} = 80$

- 2. A wire has the shape of the helix curve $\vec{r}(\theta) = (4\cos\theta, 4\sin\theta, 3\theta)$ for $0 \le \theta \le \pi$ and has linear density $\delta = 2y$. Find the y-component of the center of mass of the wire.
 - a. 80π
 - b. $\frac{1}{80\pi}$
 - c. 40π
 - d. $\frac{1}{40\pi}$
 - e. π Correct Choice

Solution: From the previous problem, M = 80. $M_y = \int y \, \delta \, ds = \int_0^\pi y \, 2y |\vec{v}| \, d\theta = \int_0^\pi 32 \sin^2\theta \, 5 \, d\theta = 80 \int_0^\pi (1 + \cos 2\theta) \, d\theta = 80 \left[\theta + \frac{\sin 2\theta}{2}\right]_0^\pi = 80\pi$ So the y-component of the center of mass is $\bar{y} = \frac{M_y}{M} = \frac{80\pi}{80} = \pi$

3. The spiral ramp shown at the right may be parametrized by

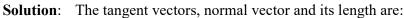
$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, \theta)$$

for
$$0 \le r \le 2$$
 and $0 \le \theta \le 2\pi$.

Find the total mass, if the surface density is

$$\delta = \sqrt{x^2 + y^2}$$

- a. $\frac{2\pi}{3}(5^{3/2}-1)$ Correct Choice
- **b**. $\frac{2\pi}{3}5^{3/2}$
- c. $\frac{2\pi}{3}(10^{3/2}-1)$
- **d**. $\frac{2\pi}{3}10^{3/2}$
- e. $\frac{2\pi}{3}(10^{3/2}-5^{3/2})$



$$\vec{e}_r = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ (\cos\theta & \sin\theta & 0) \\ \vec{e}_\theta = \begin{vmatrix} (-r\sin\theta & r\cos\theta & 1) \\ |\vec{N}| = \sqrt{\sin^2\theta + \cos^2\theta + r^2} = \sqrt{1 + r^2} \end{vmatrix} = \sqrt{1 + r^2}$$

$$\vec{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ (\cos\theta & \sin\theta & 0) \\ (-r\sin\theta & r\cos\theta & 1) \end{vmatrix} = (\sin\theta, -\cos\theta, r)$$

The density is $\delta = \sqrt{x^2 + y^2} = r$. So the mass is

$$M = \iint \delta \, dS = \iint \delta \, \left| \vec{N} \right| \, dr \, d\theta = \int_0^{2\pi} \int_0^2 r \sqrt{1 + r^2} \, dr \, d\theta = 2\pi \left[\frac{\left(1 + r^2\right)^{3/2}}{3} \right]_0^2 = \frac{2\pi}{3} (5^{3/2} - 1)$$

4. Consider the spiral ramp described in the previous problem. Find the flux of the vector field $\vec{F} = (0,0,z)$ upward through the spiral ramp.

a.
$$-9\pi^2$$

b.
$$-4\pi^2$$

d.
$$4\pi^2$$
 Correct Choice

e.
$$9\pi^2$$

Solution: From the previous problem $\vec{N} = (\sin \theta, -\cos \theta, r)$ which is oriented upward. On the ramp, $\vec{F} = (0, 0, \theta)$. So the flux is

$$\iint \vec{F} \cdot d\vec{S} = \iint \vec{F} \cdot \vec{N} dr d\theta = \int_0^{2\pi} \int_0^2 \theta r dr d\theta = \left[\frac{\theta^2}{2} \right]_0^{2\pi} \left[\frac{r^2}{2} \right]_0^2 = 4\pi^2$$

- 5. Compute $\int_A^B \vec{F} \cdot d\vec{s}$ for $\vec{F} = (2x + y, x + 2y)$ along the line segment from A = (2,1) to B = (1,3). **Hint**: Find a scalar potential.
 - a. 15
 - b. 6 Correct Choice
 - c. 0
 - d. -6
 - e. -15

Solution:
$$\vec{F} = (2x + y, x + 2y) = \vec{\nabla}f$$
 for $f = x^2 + xy + y^2$ since $\partial_x f = 2x + y$ and $\partial_y f = x + 2y$.
By the F.T.C.C. $\int \vec{F} \cdot d\vec{s} = \int_{(2,1)}^{(1,3)} \vec{\nabla}f \cdot d\vec{s} = f(1,3) - f(2,1) = (1+3+9) - (4+2+1) = 6$

- 6. Compute $\int_A^B \vec{F} \cdot d\vec{s}$ for $\vec{F} = (-y, x, 3)$ along the helix $\vec{r}(\theta) = (3\cos\theta, 3\sin\theta, 4\theta)$ from A = (3, 0, 0) to $B = (3, 0, 8\pi)$.
 - a. 0
 - b. 40π
 - c. 42π Correct Choice
 - d. 44π
 - e. 46π

Solution: Since $\vec{\nabla} \times \vec{F} = (0,0,2) \neq \vec{0}$, there is no scalar potential and we cannot use the F.T.C.C. So we compute the line integral from its definition:

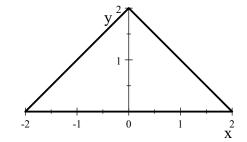
$$\vec{v} = (-3\sin\theta, 3\cos\theta, 4) \qquad \vec{F}\big|_{\vec{r}(\theta)} = (-3\sin\theta, 3\cos\theta, 3) \qquad \vec{F} \cdot \vec{v} = 9\sin^2\theta + 9\cos^2\theta + 12 = 21$$

$$\int_{-4}^{B} \vec{F} \cdot d\vec{s} = \int_{0}^{2\pi} \vec{F} \cdot \vec{v} d\theta = \int_{0}^{2\pi} 21 \, d\theta = 42\pi$$

7. Compute $\oint_{\partial T} (\sin x + 5y) dx + (2x + \cos y) dy$

clockwise around the complete boundary of the triangle shown at the right.

Hint: Use a Theorem.

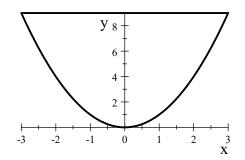


- a. 12 Correct Choice
- b. 8
- c. 0
- d. -8
- e. -12

Solution: $P = \sin x + 5y$ $Q = 2x + \cos y$ $\partial_x Q - \partial_y P = 2 - 5 = -3$ By Green's Theorem, (There is a minus sign, since we want clockwise.)

$$\oint_{\partial T} \vec{F} \cdot d\vec{s} = -\iint_{T} (\partial_{x} Q - \partial_{y} P) dx dy = -\iint_{T} -3 dx dy = 3 \text{ (area)} = 3(4) = 12$$

8. Compute $\oint \vec{F} \cdot d\vec{s}$ for $\vec{F} = (x^2y, 2x^3)$ along the piece of the parabola $y = x^2$ from (-3,9) to (3,9) followed by the line segment from (3,9) back to (-3,9).



- **Hint**: Use Green's Theorem.
- a. 405
- b. 324 Correct Choice
- c. 162
- d. 81
- e. 0

Solution:
$$\oint \vec{F} \cdot d\vec{s} = \oint P dx + Q dy$$
 with $P = x^2 y$ and $Q = 2x^3$. By Green's Theorem, $\oint \vec{F} \cdot d\vec{s} = \int_{-3}^{3} \int_{x^2}^{9} (\partial_x Q - \partial_y P) dy dx = \int_{-3}^{3} \int_{x^2}^{9} (6x^2 - x^2) dy dx = \int_{-3}^{3} 5x^2 \left[y \right]_{x^2}^{9} dx$

$$= \int_{-3}^{3} (45x^2 - 5x^4) dx = \left[15x^3 - x^5 \right]_{-3}^{3} = 2(15 \cdot 3^3 - 3^5) = 324$$

9. Compute $\iint_{\partial C} \vec{F} \cdot d\vec{S}$ over the complete surface of the cylinder $x^2 + y^2 \le 9$ for $0 \le z \le 4$ oriented out from the cylinder for $\vec{F} = (xz, yz, z^2)$.

Hint: Use Gauss' Theorem.

- a. 24π
- b. 36π
- c. 72π
- d. 144π
- e. 288π Correct Choice

Solution: By Gauss' Theorem,
$$\iint_{\partial C} \vec{F} \cdot d\vec{S} = \iiint_{C} \vec{\nabla} \cdot \vec{F} \ dV \text{ and } \vec{\nabla} \cdot \vec{F} = z + z + 2z = 4z$$

$$\iiint_{C} \vec{\nabla} \cdot \vec{F} \ dV = \int_{0}^{4} \int_{0}^{2\pi} \int_{0}^{3} 4zr dr d\theta \ dz = 4\left[\frac{z^{2}}{2}\right]_{0}^{4} (2\pi) \left[\frac{r^{2}}{2}\right]_{0}^{3} = 4(8)(2\pi) \left(\frac{9}{2}\right) = 288\pi$$

10. Sketch the region of integration for the integral $\int_0^2 \int_{x^2}^4 x \cos(y^2) \, dy \, dx$ in problem (11). Select its value here:

a.
$$\frac{1}{4}\sin 2$$

b.
$$\frac{1}{4} \sin 4$$

c.
$$\frac{1}{2}\sin 4$$

d.
$$\frac{1}{4} \sin 16$$
 Correct Choice

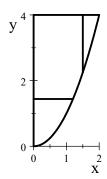
e.
$$\frac{1}{2} \sin 16$$

Solution: Reverse the order of integration:

$$\int_{0}^{2} \int_{x^{2}}^{4} x \cos(y^{2}) \, dy \, dx = \int_{0}^{4} \int_{0}^{\sqrt{y}} x \cos(y^{2}) \, dx \, dy$$
$$= \int_{0}^{4} \left[\frac{x^{2}}{2} \cos(y^{2}) \right]_{x=0}^{\sqrt{y}} \, dy = \int_{0}^{4} \frac{y}{2} \cos(y^{2}) \, dy$$

Substitute:
$$u = y^2$$
 $du = 2y dy$ $y dy = \frac{1}{2} du$

$$\int_{0}^{2} \int_{x^{2}}^{4} x \cos(y^{2}) \, dy \, dx = \frac{1}{4} \int \cos(u) \, du = \frac{1}{4} \sin(u)$$
$$= \frac{1}{4} \sin(y^{2}) \Big|_{0}^{4} = \frac{1}{4} \sin 16$$

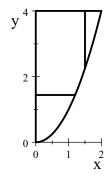


Work Out: (Points indicated. Part credit possible. Show all work.)

11. (5 points) Sketch the region of integration for the integral $\int_0^2 \int_{x^2}^4 x \cos(y^2).$

Shade in the region.

Compute its value in problem (10).



12. (20 points) Verify Stokes' Theorem
$$\iint_{P} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial P} \vec{F} \cdot d\vec{S}$$

for the vector field $\vec{F} = (-yz, xz, z^2)$ and the **surface** which is the piece of the paraboloid P given by $z = x^2 + y^2$ between z = 1 and z = 9 oriented up and in.

Notice that the boundary of P is two circles.

·

Be sure to check orientations. Use the following steps:

a. The paraboloid may be parametrized by
$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2)$$
 for $1 \le r \le 3$.

$$\hat{i}$$
 \hat{j} \hat{k}
 $\vec{e}_r = (\cos \theta, \sin \theta, 2r)$
 $\vec{e}_\theta = (-r\sin \theta, r\cos \theta, 0)$

$$\vec{N} = \vec{e}_r \times \vec{e}_\theta = \hat{\imath}(-2r^2\cos\theta) - \hat{\jmath}(2r^2\sin\theta) + \hat{k}(r\cos^2\theta + r\sin^2\theta) = (-2r^2\cos\theta, -2r^2\sin\theta, r)$$

 \vec{N} has the correct orientation.

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -yz & xz & z^2 \end{vmatrix} = \hat{i}(-x) - \hat{j}(y) + \hat{k}(z+z) = (-x, -y, 2z)$$

$$\vec{\nabla} \times \vec{F} \Big|_{\vec{R}(r,\theta)} = (-r\cos\theta, -r\sin\theta, 2r^2)$$

$$\vec{\nabla} \times \vec{F} \cdot \vec{N} = 2r^3 \cos^2 \theta + 2r^3 \sin^2 \theta + 2r^3 = 4r^3$$

$$\iint_{P} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \iint_{P} \vec{\nabla} \times \vec{F} \cdot \vec{N} dr d\theta = \int_{0}^{2\pi} \int_{1}^{3} 4r^{3} dr d\theta = 2\pi [r^{4}]_{r=1}^{3} = 2\pi (81 - 1) = 160\pi$$

Recall
$$\vec{F} = (-yz, xz, z^2)$$

b. Parametrize the upper circle $\ U$ and compute the line integral.

$$\vec{r}(\theta) = (3\cos\theta, 3\sin\theta, 9)$$

$$\vec{v}(\theta) = (-3\sin\theta, 3\cos\theta, 0)$$
 oriented correctly counterclockwise

$$\vec{F}|_{\vec{r}(\theta)} = (-27\sin\theta, 27\cos\theta, 81)$$

$$\oint_{U} \vec{F} \cdot d\vec{s} = \int_{0}^{2\pi} \vec{F} \cdot \vec{v} d\theta = \int_{0}^{2\pi} 81 \sin^{2}\theta + 81 \cos^{2}\theta d\theta = \int_{0}^{2\pi} 81 d\theta = 162\pi$$

c. Parametrize the lower circle L and compute the line integral.

$$\vec{r}(\theta) = (\cos \theta, \sin \theta, 1)$$

$$\vec{v}(\theta) = (-\sin\theta, \cos\theta, 0)$$
 oriented counterclockwise, need clockwise

Rev
$$\vec{v}(\theta) = (\sin \theta, -\cos \theta, 0)$$

$$\vec{F}\Big|_{\vec{r}(\theta)} = (-\sin\theta, \cos\theta, 1)$$

$$\oint \vec{F} \cdot d\vec{s} = \int_0^{2\pi} \vec{F} \cdot \vec{v} d\theta = \int_0^{2\pi} -\sin^2\theta - \cos^2\theta d\theta = -\int_0^{2\pi} 1 d\theta = -2\pi$$

d. Combine $\oint \vec{F} \cdot d\vec{s}$ and $\oint \vec{F} \cdot d\vec{s}$ to get $\oint \vec{F} \cdot d\vec{s}$

$$\oint_{\partial P} \vec{F} \cdot d\vec{s} = \oint_{U} \vec{F} \cdot d\vec{s} + \oint_{U} \vec{F} \cdot d\vec{s} = 162\pi - 2\pi = 160\pi$$

which agrees with part (a).

13. (15 points) (Also replaces Exam 3 #12.)

Find the mass of the solid between the hemispheres

$$z = \sqrt{4 - x^2 - y^2}$$
 and $z = \sqrt{9 - x^2 - y^2}$

for
$$z \ge 0$$
 if the density is $\delta = \frac{1}{x^2 + y^2 + z^2}$.

Solution: In spherical coordinates, $2 \le \rho \le 3$ and $\delta = \frac{1}{\rho^2}$ and $dV = \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta$.

$$M = \iiint \delta \, dV = \int_0^{2\pi} \int_0^{\pi/2} \int_2^3 \frac{1}{\rho^2} \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta = 2\pi \Big[\rho \Big]_2^3 \Big[-\cos \varphi \Big]_0^{\pi/2}$$
$$= 2\pi (3 - 2)(-0 - -1) = 2\pi$$

14. (15 points) (Also replaces Exam 3 #13.)

Find the centroid of the solid inside

the paraboloid $z = x^2 + y^2$ for $1 \le z \le 2$.

Hint: Put the differentials in the order $dr dz d\theta$.

Solution: In cylindrical coordinates, $dV = r dr d\theta dz$ and the paraboloid is $z = r^2$ or $r = \sqrt{z}$.

The volume is:

$$V = \iiint 1 \, dV = \int_0^{2\pi} \int_1^2 \int_0^{\sqrt{z}} r \, dr \, dz \, d\theta = 2\pi \int_1^2 \left[\frac{r^2}{2} \right]_0^{\sqrt{z}} \, dz = \pi \int_1^2 z \, dz = \pi \left[\frac{z^2}{2} \right]_1^2$$
$$= \frac{\pi}{2} (4 - 1) = \frac{3\pi}{2}$$

The *z*-moment is:

$$V_z = \iiint z \, dV = \int_0^{2\pi} \int_1^2 \int_0^{\sqrt{z}} z r \, dr \, dz \, d\theta = 2\pi \int_1^2 z \left[\frac{r^2}{2} \right]_0^{\sqrt{z}} \, dz$$
$$= \pi \int_1^2 z^2 \, dz = \pi \left[\frac{z^3}{3} \right]_1^2 = \frac{\pi}{3} (8 - 1) = \frac{7\pi}{3}$$

So the z-component of the centroid is:

$$\bar{z} = \frac{V_z}{V} = \frac{7\pi}{3} \frac{2}{3\pi} = \frac{14}{9} \approx 1.444$$

We know $\bar{x} = \bar{y} = 0$ by symmetry. So the centroid is $(\bar{x}, \bar{y}, \bar{z}) = (0, 0, \frac{14}{9})$.