MATH 304
Linear Algebra

Lecture 12:
Rank and nullity of a matrix.
Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

Equivalently, a subset $S \subset V$ is a basis for V if any vector $v \in V$ is uniquely represented as a linear combination

$$v = r_1v_1 + r_2v_2 + \cdots + r_kv_k,$$

where v_1, \ldots, v_k are distinct vectors from S and $r_1, \ldots, r_k \in \mathbb{R}$.
Theorem 1 Any vector space has a basis.

Theorem 2 If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The **dimension** of a vector space V, denoted $\dim V$, is the number of elements in any of its bases.
Examples.

• \(\dim \mathbb{R}^n = n \)

• \(\mathcal{M}_{2,2}(\mathbb{R}) \): the space of \(2 \times 2 \) matrices
 \(\dim \mathcal{M}_{2,2}(\mathbb{R}) = 4 \)

• \(\mathcal{M}_{m,n}(\mathbb{R}) \): the space of \(m \times n \) matrices
 \(\dim \mathcal{M}_{m,n}(\mathbb{R}) = mn \)

• \(\mathcal{P}_n \): polynomials of degree less than \(n \)
 \(\dim \mathcal{P}_n = n \)

• \(\mathcal{P} \): the space of all polynomials
 \(\dim \mathcal{P} = \infty \)

• \(\{0\} \): the trivial vector space
 \(\dim \{0\} = 0 \)
Row space of a matrix

Definition. The **row space** of an $m \times n$ matrix A is the subspace of \mathbb{R}^n spanned by rows of A.

The dimension of the row space is called the **rank** of the matrix A.

Theorem 1 The rank of a matrix A is the maximal number of linearly independent rows in A.

Theorem 2 Elementary row operations do not change the row space of a matrix.

Theorem 3 If a matrix A is in row echelon form, then the nonzero rows of A are linearly independent.

Corollary The rank of a matrix is equal to the number of nonzero rows in its row echelon form.
Theorem Elementary row operations do not change the row space of a matrix.

Proof: Suppose that A and B are $m \times n$ matrices such that B is obtained from A by an elementary row operation. Let a_1, \ldots, a_m be the rows of A and b_1, \ldots, b_m be the rows of B. We have to show that $\text{Span}(a_1, \ldots, a_m) = \text{Span}(b_1, \ldots, b_m)$.

Observe that any row b_i of B belongs to $\text{Span}(a_1, \ldots, a_m)$. Indeed, either $b_i = a_j$ for some $1 \leq j \leq m$, or $b_i = ra_i$ for some scalar $r \neq 0$, or $b_i = a_i + ra_j$ for some $j \neq i$ and $r \in \mathbb{R}$.

It follows that $\text{Span}(b_1, \ldots, b_m) \subset \text{Span}(a_1, \ldots, a_m)$.

Now the matrix A can also be obtained from B by an elementary row operation. By the above,

$$\text{Span}(a_1, \ldots, a_m) \subset \text{Span}(b_1, \ldots, b_m).$$
Problem. Find the rank of the matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

Elementary row operations do not change the row space. Let us convert A to row echelon form:

\[
\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}
\]

Vectors \((1, 1, 0), (0, 1, 1),\) and \((0, 0, 1)\) form a basis for the row space of \(A\). Thus the rank of \(A\) is 3.

It follows that the row space of \(A\) is the entire space \(\mathbb{R}^3\).
Problem. Find a basis for the vector space V spanned by vectors $w_1 = (1, 1, 0)$, $w_2 = (0, 1, 1)$, $w_3 = (2, 3, 1)$, and $w_4 = (1, 1, 1)$.

The vector space V is the row space of a matrix

$$
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{pmatrix}.
$$

According to the solution of the previous problem, vectors $(1, 1, 0)$, $(0, 1, 1)$, and $(0, 0, 1)$ form a basis for V.
Column space of a matrix

Definition. The column space of an \(m \times n \) matrix \(A \) is the subspace of \(\mathbb{R}^m \) spanned by columns of \(A \).

Theorem 1 The column space of a matrix \(A \) coincides with the row space of the transpose matrix \(A^T \).

Theorem 2 Elementary column operations do not change the column space of a matrix.

Theorem 3 Elementary row operations do not change the dimension of the column space of a matrix (although they can change the column space).

Theorem 4 For any matrix, the row space and the column space have the same dimension.
Problem. Find a basis for the column space of the matrix

\[A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}. \]

The column space of \(A \) coincides with the row space of \(A^T \). To find a basis, we convert \(A^T \) to row echelon form:

\[A^T = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \]

Vectors \((1, 0, 2, 1), (0, 1, 1, 0), \) and \((0, 0, 0, 1)\) form a basis for the column space of \(A \).
Problem. Find a basis for the column space of the matrix

\[A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}. \]

Alternative solution: We already know from a previous problem that the rank of \(A \) is 3. It follows that the columns of \(A \) are linearly independent. Therefore these columns form a basis for the column space.
Nullspace of a matrix

Let $A = (a_{ij})$ be an $m \times n$ matrix.

Definition. The **nullspace** of the matrix A, denoted $N(A)$, is the set of all n-dimensional column vectors \mathbf{x} such that $A\mathbf{x} = \mathbf{0}$.

$$
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \ldots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix}
$$

The nullspace $N(A)$ is the solution set of a system of linear homogeneous equations (with A as the coefficient matrix).
Let $A = (a_{ij})$ be an $m \times n$ matrix.

Theorem The nullspace $N(A)$ is a subspace of the vector space \mathbb{R}^n.

Proof: We have to show that $N(A)$ is nonempty, closed under addition, and closed under scaling.

First of all, $A \mathbf{0} = \mathbf{0} \implies \mathbf{0} \in N(A) \implies N(A)$ is not empty.

Secondly, if $\mathbf{x}, \mathbf{y} \in N(A)$, i.e., if $A\mathbf{x} = A\mathbf{y} = \mathbf{0}$, then $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{0} + \mathbf{0} = \mathbf{0} \implies \mathbf{x} + \mathbf{y} \in N(A)$.

Thirdly, if $\mathbf{x} \in N(A)$, i.e., if $A\mathbf{x} = \mathbf{0}$, then for any $r \in \mathbb{R}$ one has $A(r\mathbf{x}) = r(A\mathbf{x}) = r\mathbf{0} = \mathbf{0} \implies r\mathbf{x} \in N(A)$.

Definition. The dimension of the nullspace $N(A)$ is called the **nullity** of the matrix A.
Problem. Find the nullity of the matrix

\[A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \end{pmatrix}. \]

Elementary row operations do not change the nullspace. Let us convert \(A \) to reduced row echelon form:

\[
\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \end{pmatrix}
\]

\[
\begin{cases} x_1 - x_3 - 2x_4 = 0 \\ x_2 + 2x_3 + 3x_4 = 0 \end{cases} \iff \begin{cases} x_1 = x_3 + 2x_4 \\ x_2 = -2x_3 - 3x_4 \end{cases}
\]

General element of \(N(A) \):

\[
(x_1, x_2, x_3, x_4) = (t + 2s, -2t - 3s, t, s) = t(1, -2, 1, 0) + s(2, -3, 0, 1), \quad t, s \in \mathbb{R}.
\]

Vectors \((1, -2, 1, 0)\) and \((2, -3, 0, 1)\) form a basis for \(N(A) \). Thus the nullity of the matrix \(A \) is 2.
Theorem The rank of a matrix A plus the nullity of A equals the number of columns in A.

Sketch of the proof: The rank of A equals the number of nonzero rows in the row echelon form, which equals the number of leading entries.

The nullity of A equals the number of free variables in the corresponding system, which equals the number of columns without leading entries in the row echelon form.

Consequently, rank + nullity is the number of all columns in the matrix A.
Problem. Find the nullity of the matrix

\[A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \end{pmatrix}. \]

Alternative solution: Clearly, the rows of \(A \) are linearly independent. Therefore the rank of \(A \) is 2. Since

\[
(\text{rank of } A) + (\text{nullity of } A) = 4,
\]

it follows that the nullity of \(A \) is 2.