Lecture 23:
Eigenvalues and eigenvectors of a linear operator.
Basis of eigenvectors.
Eigenvalues and eigenvectors of a matrix

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an **eigenvalue** of the matrix A if $A \mathbf{v} = \lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^n$. The vector \mathbf{v} is called an **eigenvector** of A belonging to (or associated with) the eigenvalue λ.

If λ is an eigenvalue of A then the nullspace $N(A - \lambda I)$, which is nontrivial, is called the **eigenspace** of A corresponding to λ. The eigenspace consists of all eigenvectors belonging to the eigenvalue λ plus the zero vector.
Characteristic equation

Definition. Given a square matrix A, the equation $\det(A - \lambda I) = 0$ is called the **characteristic equation** of A.

Eigenvalues λ of A are roots of the characteristic equation.

If A is an $n \times n$ matrix then $p(\lambda) = \det(A - \lambda I)$ is a polynomial of degree n. It is called the **characteristic polynomial** of A.

Theorem Any $n \times n$ matrix has at most n eigenvalues.
Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L : V \rightarrow V$ be a linear operator. A number λ is called an eigenvalue of the operator L if $L(v) = \lambda v$ for a nonzero vector $v \in V$. The vector v is called an eigenvector of L associated with the eigenvalue λ. (If V is a functional vector space then eigenvectors are usually called eigenfunctions.)

If $V = \mathbb{R}^n$ then the linear operator L is given by $L(x) = Ax$, where A is an $n \times n$ matrix (and x is regarded a column vector). In this case, eigenvalues and eigenvectors of the operator L are precisely eigenvalues and eigenvectors of the matrix A.
Eigenspaces

Let $L : V \rightarrow V$ be a linear operator.

For any $\lambda \in \mathbb{R}$, let V_λ denotes the set of all solutions of the equation $L(x) = \lambda x$.

Then V_λ is a subspace of V since V_λ is the kernel of a linear operator given by $x \mapsto L(x) - \lambda x$.

V_λ minus the zero vector is the set of all eigenvectors of L associated with the eigenvalue λ.

In particular, $\lambda \in \mathbb{R}$ is an eigenvalue of L if and only if $V_\lambda \neq \{0\}$.

If $V_\lambda \neq \{0\}$ then it is called the eigenspace of L corresponding to the eigenvalue λ.
Example. \(V = C^\infty(\mathbb{R}) \), \(D : V \to V \), \(Df = f' \).

A function \(f \in C^\infty(\mathbb{R}) \) is an eigenfunction of the operator \(D \) belonging to an eigenvalue \(\lambda \) if \(f'(x) = \lambda f(x) \) for all \(x \in \mathbb{R} \).

It follows that \(f(x) = ce^{\lambda x} \), where \(c \) is a nonzero constant.

Thus each \(\lambda \in \mathbb{R} \) is an eigenvalue of \(D \). The corresponding eigenspace is spanned by \(e^{\lambda x} \).
Example. \(V = C^\infty(\mathbb{R}) \), \(L : V \to V \), \(Lf = f'' \).

\(Lf = \lambda f \iff f''(x) - \lambda f(x) = 0 \) for all \(x \in \mathbb{R} \).

It follows that each \(\lambda \in \mathbb{R} \) is an eigenvalue of \(L \) and the corresponding eigenspace \(V_\lambda \) is two-dimensional. Note that \(L = D^2 \), hence \(Df = \mu f \implies Lf = \mu^2 f \).

If \(\lambda > 0 \) then \(V_\lambda = \text{Span}(e^{\mu x}, e^{-\mu x}) \), where \(\mu = \sqrt{\lambda} \).

If \(\lambda < 0 \) then \(V_\lambda = \text{Span}(\sin(\mu x), \cos(\mu x)) \), where \(\mu = \sqrt{-\lambda} \).

If \(\lambda = 0 \) then \(V_\lambda = \text{Span}(1, x) \).
Suppose \(L : V \to V \) is a linear operator on a finite-dimensional vector space \(V \).

Let \(u_1, u_2, \ldots, u_n \) be a basis for \(V \) and \(g : V \to \mathbb{R}^n \) be the corresponding coordinate mapping. Let \(A \) be the matrix of \(L \) with respect to this basis. Then

\[
L(v) = \lambda v \iff A g(v) = \lambda g(v).
\]

Hence the eigenvalues of \(L \) coincide with those of the matrix \(A \). Moreover, the associated eigenvectors of \(A \) are coordinates of the eigenvectors of \(L \).

Definition. The characteristic polynomial \(p(\lambda) = \det(A - \lambda I) \) of the matrix \(A \) is called the **characteristic polynomial** of the operator \(L \).

Then eigenvalues of \(L \) are roots of its characteristic polynomial.
Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a different basis v_1, v_2, \ldots, v_n. Then $A = UBU^{-1}$, where U is the transition matrix from the basis v_1, \ldots, v_n to u_1, \ldots, u_n. We have to show that $\det(A - \lambda I) = \det(B - \lambda I)$ for all $\lambda \in \mathbb{R}$. We obtain

$$\det(A - \lambda I) = \det(UBU^{-1} - \lambda I)$$

$$= \det(UBU^{-1} - U(\lambda I)U^{-1}) = \det(U(B - \lambda I)U^{-1})$$

$$= \det(U) \det(B - \lambda I) \det(U^{-1}) = \det(B - \lambda I).$$
Basis of eigenvectors

Let V be a finite-dimensional vector space and $L : V \rightarrow V$ be a linear operator. Let v_1, v_2, \ldots, v_n be a basis for V and A be the matrix of the operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if vectors v_1, v_2, \ldots, v_n are eigenvectors of L.

If this is the case, then the diagonal entries of the matrix A are the corresponding eigenvalues of L.

$$ L(v_i) = \lambda_i v_i \iff A = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ 0 & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} $$
How to find a basis of eigenvectors

Theorem If \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \) are eigenvectors of a linear operator \(L \) associated with distinct eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_k \), then \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \) are linearly independent.

Corollary 1 Suppose \(\lambda_1, \lambda_2, \ldots, \lambda_k \) are all eigenvalues of a linear operator \(L : V \rightarrow V \). For any \(1 \leq i \leq k \), let \(S_i \) be a basis for the eigenspace associated to the eigenvalue \(\lambda_i \). Then these bases are disjoint and the union \(S = S_1 \cup S_2 \cup \cdots \cup S_k \) is a linearly independent set.

Moreover, if the vector space \(V \) admits a basis consisting of eigenvectors of \(L \), then \(S \) is such a basis.

Corollary 2 Let \(A \) be an \(n \times n \) matrix such that the characteristic equation \(\det(A - \lambda I) = 0 \) has \(n \) distinct roots. Then (i) there is a basis for \(\mathbb{R}^n \) consisting of eigenvectors of \(A \); (ii) all eigenspaces of \(A \) are one-dimensional.
Theorem 1 Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:
- the matrix of L with respect to some basis is diagonal;
- there exists a basis for V formed by eigenvectors of L.

The operator L is **diagonalizable** if it satisfies these conditions.

Theorem 2 Let A be an $n \times n$ matrix. Then the following conditions are equivalent:
- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as $A = UBU^{-1}$, where the matrix B is diagonal;
- there exists a basis for \mathbb{R}^n formed by eigenvectors of A.

The matrix A is **diagonalizable** if it satisfies these conditions.
Example. $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.

- The matrix A has two eigenvalues: 1 and 3.
- The eigenspace of A associated with the eigenvalue 1 is the line spanned by $v_1 = (-1, 1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line spanned by $v_2 = (1, 1)$.
- Eigenvectors v_1 and v_2 form a basis for \mathbb{R}^2.

Thus the matrix A is diagonalizable. Namely,

$A = UBU^{-1}$, where

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \quad U = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Notice that U is the transition matrix from the basis v_1, v_2 to the standard basis.
Example. \[A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \]

- The matrix \(A \) has two eigenvalues: 0 and 2.
- The eigenspace for 0 is one-dimensional; it has a basis \(S_1 = \{\mathbf{v}_1\} \), where \(\mathbf{v}_1 = (-1, 1, 0) \).
- The eigenspace for 2 is two-dimensional; it has a basis \(S_2 = \{\mathbf{v}_2, \mathbf{v}_3\} \), where \(\mathbf{v}_2 = (1, 1, 0) \), \(\mathbf{v}_3 = (-1, 0, 1) \).
- The union \(S_1 \cup S_2 = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \) is a linearly independent set, hence it is a basis for \(\mathbb{R}^3 \).

Thus the matrix \(A \) is diagonalizable. Namely, \(A = UBU^{-1} \), where

\[
B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad U = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]
There are **two obstructions** to existence of a basis consisting of eigenvectors. They are illustrated by the following examples.

Example 1. \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \).

\[\det(A - \lambda I) = (\lambda - 1)^2. \]

Hence \(\lambda = 1 \) is the only eigenvalue. The associated eigenspace is the line \(t(1, 0) \).

Example 2. \(A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \).

\[\det(A - \lambda I) = \lambda^2 + 1. \]

\(\implies \) no real eigenvalues or eigenvectors

(However there are complex eigenvalues/eigenvectors.)