MATH 433
Applied Algebra

Lecture 11:
Euler’s phi-function.
Order of a congruence class

A congruence class \([a]_n\) has **finite order** if \([a]^k = [1]_n\) for some integer \(k \geq 1\). The smallest \(k\) with this property is called the **order of** \([a]_n\). We also say that \(k\) is the **order of** \(a\) **modulo** \(n\).

Theorem A congruence class \([a]_n\) has finite order if and only if it is invertible, i.e., if \(\gcd(a, n) = 1\).

Proposition Let \(k\) be the order of an integer \(a\) modulo \(n\). Then \(a^s \equiv 1 \mod n\) if and only if \(s\) is a multiple of \(k\).

Fermat’s Little Theorem Let \(p\) be a prime number. Then \(a^{p-1} \equiv 1 \mod p\) for every integer \(a\) not divisible by \(p\).

Corollary Let \(a\) be an integer not divisible by a prime number \(p\). Then the order of \(a\) modulo \(p\) is a divisor of \(p - 1\).
Euler’s Theorem

\mathbb{Z}_n: the set of all congruence classes modulo n.
G_n: the set of all invertible congruence classes modulo n.

Theorem (Euler) Let $n \geq 2$ and $\phi(n)$ be the number of elements in G_n. Then

$$a^{\phi(n)} \equiv 1 \mod n$$

for every integer a coprime with n.

Corollary Let a be an integer coprime with an integer $n \geq 2$. Then the order of a modulo n is a divisor of $\phi(n)$.
Proof of Euler’s Theorem

Proof: Let \([b_1], [b_2], \ldots, [b_m]\) be the list of all elements of \(G_n\). Note that \(m = \phi(n)\). Consider another list:

\([a][b_1], [a][b_2], \ldots, [a][b_m]\).

Since \(\gcd(a, n) = 1\), the congruence class \([a]_n\) is in \(G_n\) as well. Hence the second list also consists of elements from \(G_n\). Also, all elements in the second list are distinct as

\([a][b] = [a][b'] \implies [a]^{-1}[a][b] = [a]^{-1}[a][b'] \implies [b] = [b']\).

It follows that the second list consists of the same elements as the first (arranged in a different way). Therefore

\([a][b_1] \cdot [a][b_2] \cdots [a][b_m] = [b_1] \cdot [b_2] \cdots [b_m]\).

Hence \([a]^mX = X\), where \(X = [b_1] \cdot [b_2] \cdots [b_m]\).

Note that \(X \in G_n\) since \(G_n\) is closed under multiplication. That is, \(X\) is invertible. Then \([a]^mXX^{-1} = XX^{-1}\)

\(\implies [a]^m[1] = [1] \implies [a^m] = [1]\). Recall that \(m = \phi(n)\).
Euler’s phi function

The number of elements in G_n, the set of invertible congruence classes modulo n, is denoted $\phi(n)$. In other words, $\phi(n)$ counts how many of the numbers $1, 2, \ldots, n$ are coprime with n. $\phi(n)$ is called Euler’s ϕ-function or Euler’s totient function.

Proposition 1 If p is prime, then $\phi(p^s) = p^s - p^{s-1}$.

Proposition 2 If $\gcd(m, n) = 1$, then $\phi(mn) = \phi(m) \phi(n)$.

Theorem Let $n = p_1^{s_1} p_2^{s_2} \ldots p_k^{s_k}$, where p_1, p_2, \ldots, p_k are distinct primes and s_1, \ldots, s_k are positive integers. Then

$$\phi(n) = p_1^{s_1-1}(p_1 - 1)p_2^{s_2-1}(p_2 - 1) \ldots p_k^{s_k-1}(p_k - 1).$$

Sketch of the proof: The proof is by induction on k. The base of induction is Proposition 1. The induction step relies on Proposition 2.
Proposition If \(\gcd(m, n) = 1 \), then \(\phi(mn) = \phi(m) \phi(n) \).

Proof: Let \(\mathbb{Z}_m \times \mathbb{Z}_n \) denote the set of all pairs \((X, Y)\) such that \(X \in \mathbb{Z}_m \) and \(Y \in \mathbb{Z}_n \). We define a function \(f : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n \) by the formula \(f([a]_{mn}) = ([a]_m, [a]_n) \).

Since \(m \) and \(n \) divide \(mn \), this function is well defined (does not depend on the choice of the representative \(a \)). Since \(\gcd(m, n) = 1 \), the Chinese Remainder Theorem implies that this function establishes a one-to-one correspondence between the sets \(\mathbb{Z}_{mn} \) and \(\mathbb{Z}_m \times \mathbb{Z}_n \).

Furthermore, an integer \(a \) is coprime with \(mn \) if and only if it is coprime with \(m \) and with \(n \). Therefore the function \(f \) also establishes a one-to-one correspondence between \(G_{mn} \) and \(G_m \times G_n \), the latter being the set of pairs \((X, Y)\) such that \(X \in G_m \) and \(Y \in G_n \). It follows that the sets \(G_{mn} \) and \(G_m \times G_n \) consist of the same number of elements. Thus \(\phi(mn) = \phi(m) \phi(n) \).
Examples. \(\phi(11) = 10, \)
\(\phi(25) = \phi(5^2) = 5 \cdot 4 = 20, \)
\(\phi(27) = \phi(3^3) = 3^2 \cdot 2 = 18, \)
\(\phi(100) = \phi(2^2 \cdot 5^2) = \phi(2^2) \phi(5^2) = 2 \cdot 20 = 40, \)
\(\phi(1001) = \phi(7 \cdot 11 \cdot 13) = \phi(7) \phi(11) \phi(13) \)
\[= 6 \cdot 10 \cdot 12 = 720. \]

Problem. Determine the last two digits of \(3^{2015} \).

The last two digits form the remainder under division by 100. Since \(\phi(100) = 40 \), we have
\[3^{40} \equiv 1 \mod 100. \]