MATH 304
Linear Algebra

Lecture 8:
Vector spaces.
Subspaces.



Linear operations on vectors

Let x = (x1,%0,...,x,) and y = (y1,y2,...,yn) be
n-dimensional vectors, and r € R be a scalar.

Vector sum: x+y=(x1+y1,%+ Yo, Xy + Yn)

Scalar multiple:  rx = (rxy, rxa, ..., rxp)
Zero vector: 0 =(0,0,...,0)
Negative of a vector:  —y = (—y1,—Y2,...,—Yn)

Vector difference:
Xx—y=x+(-y)= 1=y, % —yo,..., X0 — ¥n)



Properties of linear operations

X+y=y+Xx
(x+y)+z=x+(y+2)
x+0=0+x=x

X+ (—x)=(—x)+x=0
r(x+y)=rx+ry
(r+s)x = rx+ sx
(rs)x = r(sx)

Ix = x

Ox=0

(—1)x = —x



Linear operations on matrices

Let A= (a;) and B = (bj) be mxn matrices,
and r € R be a scalar.

Matrix sum: A+ B = (ajj + bjj)1<i<m, 1<j<n
Scalar multiple:  rA = (rajj)i<i<m, 1<j<n

Zero matrix O:  all entries are zeros

Negative of a matrix:  —A = (—ajj)1<i<m, 1<j<n
Matrix difference: A — B = (ajj — bjj)i<i<m, 1<j<n
As far as the linear operations are concerned,

the mx n matrices have the same properties as
mn-dimensional vectors.



Vector space: informal description

Vector space = linear space = a set V of objects
(called vectors) that can be added and scaled.

That is, for any u,v € V and r € R expressions

[t v] and [ru]

should make sense.

Certain restrictions apply. For instance,
u+v=yv-+u,
2u + 3u = bu.

That is, addition and scalar multiplication in V
should be like those of n-dimensional vectors.



Vector space: definition

Vector space is a set V equipped with two
operations a: VXV =V and p:RxV —V
that have certain properties (listed below).

The operation « is called addition. For any
u,v € V, the element «(u,v) is denoted u + v.

The operation  is called scalar multiplication. For
any r € R and u € V, the element u(r,u) is
denoted ru.



Properties of addition and scalar multiplication

(brief)

Al.
A2.
A3.
A4.

Ab.
Ab.
AT.
A8.

a+b=b+a
(@a+b)+c=a+(b+c)
a+0=0+a=a

at+(—a)=(—a)+a=0
r(@a+b)=ra+rb
(r+s)a=ra+sa

(rs)a = r(sa)

la=a



Properties of addition and scalar multiplication (detailed)

Al. a+b=b+a foralla,be V.
A2. (a+b)+c=a+(b+c) foralla,b,ce V.

A3. There exists an element of V/, called the zero
vector and denoted 0, such that a+0=0+a=a
forallac V.

A4. For any a € V there exists an element of V/,
denoted —a, such that a+ (—a) =(—a)+a=0.
A5. r(@a+b)=ra+rb forallr€Randa,bec V.
A6. (r+s)a=ra+sa forallr,seé Randac V.
A7. (rs)a=r(sa) forallr,scRandac V.

A8. la=a forallaec V.



e Associativity of addition implies that a multiple
sum uj + up + - - - + ug is well defined for any
up,Up,...,ug € V.

e Subtraction in V is defined as usual:
a—b=a+(-b).

e Addition and scalar multiplication are called
linear operations.

Given uy,up,...,us € Vand r,n, ..., rx € R,

(rug + nup + - 4 raug |

is called a linear combination of uq, u,, ... uy.



Examples of vector spaces

In most examples, addition and scalar multiplication
are natural operations so that properties A1-A8 are
easy to verify.

e R": n-dimensional coordinate vectors

o M ,(R): mxn matrices with real entries

e R™: infinite sequences (xi,xo,...), x; € R
For any x = (x1,x2,...),y=(y1,¥2,...) ER® and r e R

let x+y=(x1+yi,x2+y2,...), rx=(rx,rx,...).
Then 0=(0,0,...) and —x = (—x1, —X2,...).

e {0}: the trivial vector space
0+0=0 r0=0 -0=0.



Functional vector spaces

e F(R): the set of all functions f: R — R

Given functions f,g € F(R) and a scalar r € R, let
(f +g)(x) = f(x) + g(x) and (rf)(x) = rf(x) for all x € R.
Zero vector: o(x) = 0. Negative: (—f)(x) = —f(x).

e C(R): all continuous functions f : R — R

Linear operations are inherited from F(R). We only need to
check that f,g € C(R) = f+g,rf € C(R), the zero
function is continuous, and f € C(R) = —f € C(R).

e C!(R): all continuously differentiable functions
f-R—R

e C>™(R): all smooth functions f : R — R

e P: all polynomials p(x) = ap + aix + -+ - + a,x”



Some general observations

e The zero vector is unique.

If z; and z, are zeros then z; = z; + z, = z,.

e For any a € V, the negative —a is unique.
Suppose b and b’ are negatives of a. Then

b =b+0=b'+(a+b)=(b'+a)+b=0+b=Db.

e 0a=0 forany ac V.

Indeed, 0a+a=0a+la=(0+1)a=1la=a.

Then la+a=a — O0a+a—a=a—-a — 0a=0.
e (—1)a= —a forany aec V.

Indeed, a+(—1)a=(—-1)a+a=(-1l)at+la=(-1+1)a
=0a=0.



Counterexample: dumb scaling

Consider the set V = R" with the standard
addition and a nonstandard scalar multiplication:

forany a € R"” and r € R.

Properties A1-A4 hold because they do not involve
scalar multiplication.

AS. ro(a+b)=roa+rob < 0=0+0
Ab. (r+s)0a=rGa+s0a <= 0=0+0
A7. (rs)®a=r®(s®a) <~ 0=0
A8.1®a=a <— 0=a

A8 is the only property that fails. As a consequence,
property A8 does not follow from properties A1-A7.



Subspaces of vector spaces

Definition. A vector space V| is a subspace of a
vector space V if Vy C V and the linear operations
on V{ agree with the linear operations on V.

Examples.
e F(R): all functions f : R — R

e C(R): all continuous functions f : R — R
C(R) is a subspace of F(R).

e P: polynomials p(x) = ap + a;x + - - - + apx”
e P, polynomials of degree at most n

P, is a subspace of P.



Subspaces of vector spaces

Counterexamples.

e R": n-dimensional coordinate vectors

e (" vectors with rational coordinates

Q" is not a subspace of R".

V2(1,1,...,1) ¢ Q" = Q" is not a vector space
(scaling is not well defined).

e P: polynomials p(x) = ap + a;x + - - - + apx”
e P,: polynomials of degree n (n > 0)

P, is not a subspace of P.

—x"+ (x"+1)=1¢ P, = P, is not a vector space
(addition is not well defined).



If S is a subset of a vector space V then S inherits
from V addition and scalar multiplication. However
S need not be closed under these operations.

Proposition A subset S of a vector space V is a
subspace of V if and only if S is nonempty and
closed under linear operations, i.e.,

X,yeS = x+yesS,
xeS — rxeS§ forall reR.

Proof: “only if" is obvious.

“if": properties like associative, commutative, or distributive
law hold for S because they hold for V. We only need to
verify properties A3 and A4. Take any x € S (note that S is
nonempty). Then 0 =0x € S. Also, —x =(—-1)x € S.



