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Linear Algebra

Lecture 10:
Linear independence.

Basis of a vector space.



Linear independence

Definition. Let V be a vector space. Vectors
v1, v2, . . . , vk ∈ V are called linearly dependent if
they satisfy a relation

r1v1 + r2v2 + · · · + rkvk = 0,

where the coefficients r1, . . . , rk ∈ R are not all
equal to zero. Otherwise vectors v1, v2, . . . , vk are
called linearly independent. That is, if

r1v1+r2v2+ · · ·+rkvk = 0 =⇒ r1 = · · · = rk = 0.

An infinite set S ⊂ V is linearly dependent if
there are some linearly dependent vectors v1, . . . , vk ∈ S .

Otherwise S is linearly independent.



Examples of linear independence

• Vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and
e3 = (0, 0, 1) in R

3.

xe1 + ye2 + ze3 = 0 =⇒ (x , y , z) = 0
=⇒ x = y = z = 0

• Matrices E11 =

(

1 0
0 0

)

, E12 =

(

0 1
0 0

)

,

E21 =

(

0 0
1 0

)

, and E22 =

(

0 0
0 1

)

.

aE11 + bE12 + cE21 + dE22 = O =⇒

(

a b

c d

)

= O

=⇒ a = b = c = d = 0



Examples of linear independence

• Polynomials 1, x , x2, . . . , xn.

a0 + a1x + a2x
2 + · · · + anx

n = 0 identically
=⇒ ai = 0 for 0 ≤ i ≤ n

• The infinite set {1, x , x2, . . . , xn, . . . }.

• Polynomials p1(x) = 1, p2(x) = x − 1, and
p3(x) = (x − 1)2.

a1p1(x) + a2p2(x) + a3p3(x) = a1 + a2(x − 1) + a3(x − 1)2 =
= (a1 − a2 + a3) + (a2 − 2a3)x + a3x

2.

Hence a1p1(x) + a2p2(x) + a3p3(x) = 0 identically
=⇒ a1 − a2 + a3 = a2 − 2a3 = a3 = 0
=⇒ a1 = a2 = a3 = 0



Problem Let v1 = (1, 2, 0), v2 = (3, 1, 1), and
v3 = (4,−7, 3). Determine whether vectors
v2, v2, v3 are linearly independent.

We have to check if there exist r1, r2, r3 ∈ R not all
zero such that r1v1 + r2v2 + r3v3 = 0.

This vector equation is equivalent to a system






r1 + 3r2 + 4r3 = 0
2r1 + r2 − 7r3 = 0
0r1 + r2 + 3r3 = 0





1 3 4 0
2 1 −7 0
0 1 3 0





The vectors v1, v2, v3 are linearly dependent if and
only if the matrix A = (v1, v2, v3) is singular.
We obtain that det A = 0.



Theorem The following conditions are equivalent:
(i) vectors v1, . . . , vk are linearly dependent;
(ii) one of vectors v1, . . . , vk is a linear combination
of the other k − 1 vectors.

Proof: (i) =⇒ (ii) Suppose that

r1v1 + r2v2 + · · · + rkvk = 0,

where ri 6= 0 for some 1 ≤ i ≤ k . Then

vi = − r1
ri
v1 − · · · − ri−1

ri
vi−1 −

ri+1

ri
vi+1 − · · · − rk

ri
vk .

(ii) =⇒ (i) Suppose that

vi = s1v1 + · · · + si−1vi−1 + si+1vi+1 + · · · + skvk

for some scalars sj . Then

s1v1 + · · · + si−1vi−1 − vi + si+1vi+1 + · · · + skvk = 0.



Theorem Vectors v1, v2, . . . , vm ∈ R
n are linearly

dependent whenever m > n (i.e., the number of
coordinates is less than the number of vectors).

Proof: Let vj = (a1j , a2j , . . . , anj) for j = 1, 2, . . . , m.
Then the vector equality t1v1 + t2v2 + · · · + tmvm = 0
is equivalent to the system














a11t1 + a12t2 + · · · + a1mtm = 0,
a21t1 + a22t2 + · · · + a2mtm = 0,

· · · · · · · · ·
an1t1 + an2t2 + · · · + anmtm = 0.

Note that vectors v1, v2, . . . , vm are columns of the matrix
(aij). The number of leading entries in the row echelon form
is at most n. If m > n then there are free variables, therefore
the zero solution is not unique.



Example. Consider vectors v1 = (1,−1, 1),
v2 = (1, 0, 0), v3 = (1, 1, 1), and v4 = (1, 2, 4) in R

3.

Two vectors are linearly dependent if and only if
they are parallel. Hence v1 and v2 are linearly
independent.

Vectors v1, v2, v3 are linearly independent if and
only if the matrix A = (v1, v2, v3) is invertible.

det A =

∣

∣

∣

∣

∣

∣

1 1 1
−1 0 1

1 0 1

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

−1 1
1 1

∣

∣

∣

∣

= 2 6= 0.

Therefore v1, v2, v3 are linearly independent.

Four vectors in R
3 are always linearly dependent.

Thus v1, v2, v3, v4 are linearly dependent.



Problem. Show that functions ex , e2x , and e3x

are linearly independent in C∞(R).

Suppose that aex + be2x + ce3x = 0 for all x ∈ R, where
a, b, c are constants. We have to show that a = b = c = 0.

Differentiate this identity twice:

aex + be2x + ce3x = 0,

aex + 2be2x + 3ce3x = 0,

aex + 4be2x + 9ce3x = 0.

It follows that A(x)v = 0, where

A(x) =





ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x



, v =





a

b

c



.



A(x) =





ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x



, v =





a

b

c



.

det A(x) = ex

∣

∣

∣

∣

∣

∣

1 e2x e3x

1 2e2x 3e3x

1 4e2x 9e3x

∣

∣

∣

∣

∣

∣

= exe2x

∣

∣

∣

∣

∣

∣

1 1 e3x

1 2 3e3x

1 4 9e3x

∣

∣

∣

∣

∣

∣

= exe2xe3x

∣

∣

∣

∣

∣

∣

1 1 1
1 2 3
1 4 9

∣

∣

∣

∣

∣

∣

= e6x

∣

∣

∣

∣

∣

∣

1 1 1
1 2 3
1 4 9

∣

∣

∣

∣

∣

∣

= e6x

∣

∣

∣

∣

∣

∣

1 1 1
0 1 2
1 4 9

∣

∣

∣

∣

∣

∣

= e6x

∣

∣

∣

∣

∣

∣

1 1 1
0 1 2
0 3 8

∣

∣

∣

∣

∣

∣

= e6x

∣

∣

∣

∣

1 2
3 8

∣

∣

∣

∣

= 2e6x 6= 0.

Since the matrix A(x) is invertible, we obtain

A(x)v = 0 =⇒ v = 0 =⇒ a = b = c = 0



Wronskian

Let f1, f2, . . . , fn be smooth functions on an interval
[a, b]. The Wronskian W [f1, f2, . . . , fn] is a
function on [a, b] defined by

W [f1, f2, . . . , fn](x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1(x) f2(x) · · · fn(x)
f ′

1(x) f ′

2(x) · · · f ′

n(x)
...

...
. . .

...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Theorem If W [f1, f2, . . . , fn](x0) 6= 0 for some
x0 ∈ [a, b] then the functions f1, f2, . . . , fn are
linearly independent in C [a, b].



Theorem 1 Let λ1, λ2, . . . , λk be distinct real
numbers. Then the functions eλ1x , eλ2x , . . . , eλkx

are linearly independent.

Theorem 2 The set of functions

{xmeλx | λ ∈ R, m = 0, 1, 2, . . . }

is linearly independent.



Spanning set

Let S be a subset of a vector space V .

Definition. The span of the set S is the smallest
subspace W ⊂ V that contains S . If S is not
empty then W = Span(S) consists of all linear
combinations r1v1 + r2v2 + · · · + rkvk such that
v1, . . . , vk ∈ S and r1, . . . , rk ∈ R.

We say that the set S spans the subspace W or
that S is a spanning set for W .

Remark. If S1 is a spanning set for a vector space
V and S1 ⊂ S2 ⊂ V , then S2 is also a spanning set
for V .



Basis

Definition. Let V be a vector space. A linearly
independent spanning set for V is called a basis.

Suppose that a set S ⊂ V is a basis for V .

“Spanning set” means that any vector v ∈ V can be
represented as a linear combination

v = r1v1 + r2v2 + · · · + rkvk ,

where v1, . . . , vk are distinct vectors from S and
r1, . . . , rk ∈ R. “Linearly independent” implies that the above
representation is unique:

v = r1v1 + r2v2 + · · · + rkvk = r ′1v1 + r ′2v2 + · · · + r ′kvk

=⇒ (r1 − r ′1)v1 + (r2 − r ′2)v2 + · · · + (rk − r ′k)vk = 0

=⇒ r1 − r ′1 = r2 − r ′2 = . . . = rk − r ′k = 0



Examples. • Standard basis for R
n:

e1 = (1, 0, 0, . . . , 0, 0), e2 = (0, 1, 0, . . . , 0, 0),. . . ,
en = (0, 0, 0, . . . , 0, 1).
Indeed, (x1, x2, . . . , xn) = x1e1 + x2e2 + · · · + xnen.

• Matrices

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)

form a basis for M2,2(R).
(

a b

c d

)

= a

(

1 0
0 0

)

+ b

(

0 1
0 0

)

+ c

(

0 0
1 0

)

+ d

(

0 0
0 1

)

.

• Polynomials 1, x , x2, . . . , xn−1 form a basis for
Pn = {a0 + a1x + · · · + an−1x

n−1 : ai ∈ R}.

• The infinite set {1, x , x2, . . . , xn, . . . } is a basis
for P , the space of all polynomials.



Bases for R
n

Let v1, v2, . . . , vk be vectors in R
n.

Theorem 1 If k < n then the vectors
v1, v2, . . . , vk do not span R

n.

Theorem 2 If k > n then the vectors
v1, v2, . . . , vk are linearly dependent.

Theorem 3 If k = n then the following conditions
are equivalent:
(i) {v1, v2, . . . , vn} is a basis for R

n;
(ii) {v1, v2, . . . , vn} is a spanning set for R

n;
(iii) {v1, v2, . . . , vn} is a linearly independent set.



Example. Consider vectors v1 = (1,−1, 1),
v2 = (1, 0, 0), v3 = (1, 1, 1), and v4 = (1, 2, 4) in R

3.

Vectors v1 and v2 are linearly independent (as they
are not parallel), but they do not span R

3.

Vectors v1, v2, v3 are linearly independent since
∣

∣

∣

∣

∣

∣

1 1 1
−1 0 1

1 0 1

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

−1 1
1 1

∣

∣

∣

∣

= −(−2) = 2 6= 0.

Therefore {v1, v2, v3} is a basis for R
3.

Vectors v1, v2, v3, v4 span R
3 (because v1, v2, v3

already span R
3), but they are linearly dependent.


