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Linear Algebra

Lecture 15:
Kernel and range.

General linear equation.
Marix transformations.



Linear transformation

Definition. Given vector spaces V1 and V2, a
mapping L : V1 → V2 is linear if

L(x + y) = L(x) + L(y),

L(rx) = rL(x)

for any x, y ∈ V1 and r ∈ R.

Basic properties of linear mappings:

• L(r1v1 + · · · + rkvk) = r1L(v1) + · · · + rkL(vk)
for all k ≥ 1, v1, . . . , vk ∈ V1, and r1, . . . , rk ∈ R.

• L(01) = 02, where 01 and 02 are zero vectors in
V1 and V2, respectively.

• L(−v) = −L(v) for any v ∈ V1.



Examples of linear mappings

• Scaling L : V → V , L(v) = sv, where s ∈ R.
L(x + y) = s(x + y) = sx + sy = L(x) + L(y),
L(rx) = s(rx) = r(sx) = rL(x).

• Dot product with a fixed vector

ℓ : R
n → R, ℓ(v) = v · v0, where v0 ∈ R

n.
ℓ(x + y) = (x + y) · v0 = x · v0 + y · v0 = ℓ(x) + ℓ(y),
ℓ(rx) = (rx) · v0 = r(x · v0) = rℓ(x).

• Cross product with a fixed vector

L : R
3 → R

3, L(v) = v × v0, where v0 ∈ R
3.

• Multiplication by a fixed matrix

L : R
n → R

m, L(v) = Av, where A is an m×n

matrix and all vectors are column vectors.



Linear mappings of functional vector spaces

• Evaluation at a fixed point

ℓ : F (R) → R, ℓ(f ) = f (a), where a ∈ R.

• Multiplication by a fixed function

L : F (R) → F (R), L(f ) = gf , where g ∈ F (R).

• Differentiation D : C 1(R) → C (R), L(f ) = f ′.
D(f + g) = (f + g)′ = f ′ + g ′ = D(f ) + D(g),
D(rf ) = (rf )′ = rf ′ = rD(f ).

• Integration over a finite interval

ℓ : C (R) → R, ℓ(f ) =

∫

b

a

f (x) dx , where

a, b ∈ R, a < b.



Properties of linear mappings

• If a linear mapping L : V → W is invertible then
the inverse mapping L−1 : W → V is also linear.

• If L : V → W and M : W → X are linear
mappings then the composition M ◦ L : V → X is
also linear.

• If L1 : V → W and L2 : V → W are linear
mappings then the sum L1 + L2 is also linear.



Linear differential operators

• an ordinary differential operator

L : C∞(R) → C∞(R), L = g0

d2

dx2
+ g1

d

dx
+ g2,

where g0, g1, g2 are smooth functions on R.

That is, L(f ) = g0f
′′ + g1f

′ + g2f .

• Laplace’s operator ∆ : C∞(R2) → C∞(R2),

∆f =
∂2f

∂x2
+

∂2f

∂y 2

(a.k.a. the Laplacian; also denoted by ∇2).



Range and kernel

Let V , W be vector spaces and L : V → W be a
linear mapping.

Definition. The range (or image) of L is the set
of all vectors w ∈ W such that w = L(v) for some
v ∈ V . The range of L is denoted L(V ).

The kernel of L, denoted ker L, is the set of all
vectors v ∈ V such that L(v) = 0.

Theorem (i) The range of L is a subspace of W .
(ii) The kernel of L is a subspace of V .



Example. L : R
3 → R

3, L





x

y

z



 =





1 0 −1
1 2 −1
1 0 −1









x

y

z



.

The kernel ker L is the nullspace of the matrix.

L





x

y

z



 = x





1
1
1



 + y





0
2
0



 + z





−1
−1
−1





The range f (R3) is the column space of the matrix.



Example. L : R
3 → R

3, L





x

y

z



 =





1 0 −1
1 2 −1
1 0 −1









x

y

z



.

The range of L is spanned by vectors (1, 1, 1), (0, 2, 0), and
(−1,−1,−1). It follows that L(R3) is the plane spanned by
(1, 1, 1) and (0, 1, 0).

To find ker L, we apply row reduction to the matrix:




1 0 −1
1 2 −1
1 0 −1



 →





1 0 −1
0 2 0
0 0 0



 →





1 0 −1
0 1 0
0 0 0





Hence (x , y , z) ∈ ker L if x − z = y = 0.
It follows that ker L is the line spanned by (1, 0, 1).



More examples

f : M2(R) → M2(R), f (A) = A + AT .

f

(

a b

c d

)

=

(

2a b + c

b + c 2d

)

.

ker f is the subspace of anti-symmetric matrices, the
range of f is the subspace of symmetric matrices.

g : M2(R) → M2(R), g(A) =





0 1
0 0



A.

g

(

a b

c d

)

=

(

c d

0 0

)

.

The range of g is the subspace of matrices with the
zero second row, ker g is the same as the range
=⇒ g(g(A)) = O.



General linear equations

Definition. A linear equation is an equation of the form

L(x) = b,

where L : V → W is a linear mapping, b is a given vector
from W , and x is an unknown vector from V .

The range of L is the set of all vectors b ∈ W such that the
equation L(x) = b has a solution.

The kernel of L is the solution set of the homogeneous linear
equation L(x) = 0.

Theorem If the linear equation L(x) = b is solvable then the
general solution is

x0 + t1v1 + · · · + tkvk ,

where x0 is a particular solution, v1, . . . , vk is a basis for the
kernel of L, and t1, . . . , tk are arbitrary scalars.



Example.

{

x + y + z = 4,
x + 2y = 3.

L : R
3 → R

2, L





x

y

z



 =

(

1 1 1
1 2 0

)





x

y

z



.

Linear equation: L(x) = b, where b =

(

4
3

)

.

(

1 1 1 4
1 2 0 3

)

→

(

1 1 1 4
0 1 −1 −1

)

→

(

1 0 2 5
0 1 −1 −1

)

{

x + 2z = 5
y − z = −1

⇐⇒

{

x = 5 − 2z

y = −1 + z

(x , y , z) = (5 − 2t,−1 + t, t) = (5,−1, 0) + t(−2, 1, 1).



Example. u′′(x) + u(x) = e2x .

Linear operator L : C 2(R) → C (R), Lu = u′′ + u.

Linear equation: Lu = b, where b(x) = e2x .

It can be shown that the range of L is the entire
space C (R) while the kernel of L is spanned by the
functions sin x and cos x .

Particular solution: u0 = 1

5
e2x .

Thus the general solution is

u(x) = 1

5
e2x + t1 sin x + t2 cos x .



Matrix transformations

Any m×n matrix A gives rise to a transformation
L : R

n → R
m given by L(x) = Ax, where x ∈ R

n

and L(x) ∈ R
m are regarded as column vectors.

This transformation is linear.

Example. L





x

y

z



 =





1 0 2
3 4 7
0 5 8









x

y

z



.

Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) be the
standard basis for R

3. We have that L(e1) = (1, 3, 0),
L(e2) = (0, 4, 5), L(e3) = (2, 7, 8). Thus L(e1), L(e2), L(e3)
are columns of the matrix.



Problem. Find a linear mapping L : R
3 → R

2

such that L(e1) = (1, 1), L(e2) = (0,−2),
L(e3) = (3, 0), where e1, e2, e3 is the standard
basis for R

3.

L(x , y , z) = L(xe1 + ye2 + ze3)

= xL(e1) + yL(e2) + zL(e3)

= x(1, 1) + y(0,−2) + z(3, 0) = (x + 3z , x − 2y)

L(x , y , z) =

(

x + 3z
x − 2y

)

=

(

1 0 3
1 −2 0

)





x

y

z





Columns of the matrix are vectors L(e1), L(e2), L(e3).



Theorem Suppose L : R
n → R

m is a linear map. Then
there exists an m×n matrix A such that L(x) = Ax for all
x ∈ R

n. Columns of A are vectors L(e1), L(e2), . . . , L(en),
where e1, e2, . . . , en is the standard basis for R

n.

y = Ax ⇐⇒









y1

y2

...
ym









=









a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

















x1

x2

...
xn









⇐⇒









y1

y2

...
ym









= x1









a11

a21

...
am1









+ x2









a12

a22

...
am2









+ · · · + xn









a1n

a2n

...
amn











Change of coordinates

Let V be a vector space.
Let v1, v2, . . . , vn be a basis for V and g1 : V → R

n be the
coordinate mapping corresponding to this basis.

Let u1,u2, . . . ,un be another basis for V and g2 : V → R
n

be the coordinate mapping corresponding to this basis.

V
g1

ւ
g2

ց

R
n −→ R

n

The composition g2◦g
−1

1
is a linear mapping of R

n to itself.
It is represented as x 7→ Ux, where U is an n×n matrix.

U is called the transition matrix from v1, v2 . . . , vn to
u1,u2 . . . ,un. Columns of U are coordinates of the vectors
v1, v2, . . . , vn with respect to the basis u1,u2, . . . ,un.



Matrix of a linear transformation

Let V , W be vector spaces and f : V → W be a linear map.
Let v1, v2, . . . , vn be a basis for V and g1 : V → R

n be the
coordinate mapping corresponding to this basis.

Let w1,w2, . . . ,wm be a basis for W and g2 : W → R
m

be the coordinate mapping corresponding to this basis.

V
f

−→ W

g1





y





yg2

R
n −→ R

m

The composition g2◦f ◦g
−1

1
is a linear mapping of R

n to R
m.

It is represented as x 7→ Ax, where A is an m×n matrix.

A is called the matrix of f with respect to bases v1, . . . , vn

and w1, . . . ,wm. Columns of A are coordinates of vectors
f (v1), . . . , f (vn) with respect to the basis w1, . . . ,wm.


