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Linear Algebra

Lecture 20:
The Gram-Schmidt process (continued).

Eigenvalues and eigenvectors.



Orthogonal sets

Let V be a vector space with an inner product.

Definition. Nonzero vectors v1, v2, . . . , vk ∈ V

form an orthogonal set if they are orthogonal to
each other: 〈vi , vj〉 = 0 for i 6= j .

If, in addition, all vectors are of unit norm,
‖vi‖ = 1, then v1, v2, . . . , vk is called an
orthonormal set.

Theorem Any orthogonal set is linearly
independent.



Orthogonal projection

Theorem Let V be a finite-dimensional inner
product space and V0 be a subspace of V . Then
any vector x ∈ V is uniquely represented as
x = p + o, where p ∈ V0 and o ⊥ V0.

The component p is the orthogonal projection of
the vector x onto the subspace V0. The distance
from x to the subspace V0 is ‖o‖.
If v1, v2, . . . , vn is an orthogonal basis for V0 then

p =
〈x, v1〉
〈v1, v1〉

v1 +
〈x, v2〉
〈v2, v2〉

v2 + · · · + 〈x, vn〉
〈vn, vn〉

vn.
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The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.
Suppose x1, x2, . . . , xn is a basis for V . Let

v1 = x1,

v2 = x2 −
〈x2, v1〉
〈v1, v1〉

v1,

v3 = x3 −
〈x3, v1〉
〈v1, v1〉

v1 −
〈x3, v2〉
〈v2, v2〉

v2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vn = xn −
〈xn, v1〉
〈v1, v1〉

v1 − · · · − 〈xn, vn−1〉
〈vn−1, vn−1〉

vn−1.

Then v1, v2, . . . , vn is an orthogonal basis for V .



Span(v1,v2) = Span(x1,x2)
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Any basis
x1, x2, . . . , xn

−→ Orthogonal basis
v1, v2, . . . , vn

Properties of the Gram-Schmidt process:

• vk = xk − (α1x1 + · · · + αk−1xk−1), 1 ≤ k ≤ n;

• the span of v1, . . . , vk is the same as the span
of x1, . . . , xk ;

• vk is orthogonal to x1, . . . , xk−1;

• vk = xk − pk , where pk is the orthogonal
projection of the vector xk on the subspace spanned
by x1, . . . , xk−1;

• ‖vk‖ is the distance from xk to the subspace
spanned by x1, . . . , xk−1.



Normalization

Let V be a vector space with an inner product.
Suppose v1, v2, . . . , vn is an orthogonal basis for V .

Let w1 =
v1

‖v1‖
, w2 =

v2

‖v2‖
,. . . , wn =

vn

‖vn‖
.

Then w1,w2, . . . ,wn is an orthonormal basis for V .

Theorem Any finite-dimensional vector space with
an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with
an inner product may or may not have an
orthonormal basis.



Orthogonalization / Normalization

An alternative form of the Gram-Schmidt process combines
orthogonalization with normalization.

Suppose x1, x2, . . . , xn is a basis for an inner
product space V . Let

v1 = x1, w1 = v1

‖v1‖ ,

v2 = x2 − 〈x2,w1〉w1, w2 = v2

‖v2‖ ,

v3 = x3 − 〈x3,w1〉w1 − 〈x3,w2〉w2, w3 = v3

‖v3‖ ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vn = xn − 〈xn,w1〉w1 − · · · − 〈xn,wn−1〉wn−1,
wn = vn

‖vn‖ .

Then w1,w2, . . . ,wn is an orthonormal basis for V .



Problem. Let Π be the plane in R
3 spanned by

vectors x1 = (1, 2, 2) and x2 = (−1, 0, 2).
(i) Find an orthonormal basis for Π.
(ii) Extend it to an orthonormal basis for R

3.

x1, x2 is a basis for the plane Π. We can extend it
to a basis for R

3 by adding one vector from the
standard basis. For instance, vectors x1, x2, and
x3 = (0, 0, 1) form a basis for R

3 because
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Using the Gram-Schmidt process, we orthogonalize
the basis x1 = (1, 2, 2), x2 = (−1, 0, 2), x3 = (0, 0, 1):

v1 = x1 = (1, 2, 2),

v2 = x2 −
〈x2, v1〉
〈v1, v1〉

v1 = (−1, 0, 2) − 3

9
(1, 2, 2)

= (−4/3,−2/3, 4/3),

v3 = x3 −
〈x3, v1〉
〈v1, v1〉

v1 −
〈x3, v2〉
〈v2, v2〉

v2

= (0, 0, 1) − 2

9
(1, 2, 2) − 4/3

4
(−4/3,−2/3, 4/3)

= (2/9,−2/9, 1/9).



Now v1 = (1, 2, 2), v2 = (−4/3,−2/3, 4/3),
v3 = (2/9,−2/9, 1/9) is an orthogonal basis for R

3

while v1, v2 is an orthogonal basis for Π. It remains
to normalize these vectors.

〈v1, v1〉 = 9 =⇒ ‖v1‖ = 3

〈v2, v2〉 = 4 =⇒ ‖v2‖ = 2

〈v3, v3〉 = 1/9 =⇒ ‖v3‖ = 1/3

w1 = v1/‖v1‖ = (1/3, 2/3, 2/3) = 1

3
(1, 2, 2),

w2 = v2/‖v2‖ = (−2/3,−1/3, 2/3) = 1

3
(−2,−1, 2),

w3 = v3/‖v3‖ = (2/3,−2/3, 1/3) = 1

3
(2,−2, 1).

w1,w2 is an orthonormal basis for Π.
w1,w2,w3 is an orthonormal basis for R

3.



Problem. Find the distance from the point
y = (0, 0, 0, 1) to the subspace Π ⊂ R

4 spanned by
vectors x1 = (1,−1, 1,−1), x2 = (1, 1, 3,−1), and
x3 = (−3, 7, 1, 3).

Let us apply the Gram-Schmidt process to vectors
x1, x2, x3, y. We should obtain an orthogonal
system v1, v2, v3, v4. The desired distance will be
|v4|.



x1 = (1,−1, 1,−1), x2 = (1, 1, 3,−1),
x3 = (−3, 7, 1, 3), y = (0, 0, 0, 1).

v1 = x1 = (1,−1, 1,−1),

v2 = x2−
〈x2, v1〉
〈v1, v1〉

v1 = (1, 1, 3,−1)− 4

4
(1,−1, 1,−1)

= (0, 2, 2, 0),

v3 = x3 −
〈x3, v1〉
〈v1, v1〉

v1 −
〈x3, v2〉
〈v2, v2〉

v2

= (−3, 7, 1, 3) − −12

4
(1,−1, 1,−1) − 16

8
(0, 2, 2, 0)

= (0, 0, 0, 0).



The Gram-Schmidt process can be used to check

linear independence of vectors!

The vector x3 is a linear combination of x1 and x2.
Π is a plane, not a 3-dimensional subspace.
We should orthogonalize vectors x1, x2, y.

v4 = y − 〈y, v1〉
〈v1, v1〉

v1 −
〈y, v2〉
〈v2, v2〉

v2

= (0, 0, 0, 1) − −1

4
(1,−1, 1,−1) − 0

8
(0, 2, 2, 0)

= (1/4,−1/4, 1/4, 3/4).

|v4| =
∣
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.



Problem. Find the distance from the point
z = (0, 0, 1, 0) to the plane Π that passes through
the point x0 = (1, 0, 0, 0) and is parallel to the
vectors v1 = (1,−1, 1,−1) and v2 = (0, 2, 2, 0).

The plane Π is not a subspace of R
4 as it does not

pass through the origin. Let Π0 = Span(v1, v2).
Then Π = Π0 + x0.

Hence the distance from the point z to the plane Π
is the same as the distance from the point z − x0

to the plane Π0.

We shall apply the Gram-Schmidt process to vectors
v1, v2, z − x0. This will yield an orthogonal system
w1,w2,w3. The desired distance will be |w3|.



v1 = (1,−1, 1,−1), v2 = (0, 2, 2, 0), z − x0 = (−1, 0, 1, 0).

w1 = v1 = (1,−1, 1,−1),

w2 = v2 −
〈v2,w1〉
〈w1,w1〉

w1 = v2 = (0, 2, 2, 0) as v2 ⊥ v1.

w3 = (z − x0) −
〈z − x0,w1〉
〈w1,w1〉

w1 −
〈z − x0,w2〉
〈w2,w2〉

w2

= (−1, 0, 1, 0) − 0

4
(1,−1, 1,−1) − 2

8
(0, 2, 2, 0)

= (−1,−1/2, 1/2, 0).

|w3| =
∣
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Linear transformations of R
2

Any linear mapping f : R
2 → R

2 is represented as
multiplication of a 2-dimensional column vector by a
2×2 matrix: f (x) = Ax or

f

(

x

y

)

=

(

a b

c d

)(

x

y

)

.

Linear transformations corresponding to particular
matrices can have various geometric properties.



A =

(

0 −1
1 0

)

Rotation by 90o



A =

(

1√
2

− 1√
2

1√
2

1√
2

)

Rotation by 45o



A =

(

−1 0
0 1

)

Reflection in
the vertical axis



A =

(

0 1
1 0

)

Reflection in
the line x − y = 0



A =

(

1 1/2
0 1

)

Horizontal shear



A =

(

1/2 0
0 1/2

)

Scaling



A =

(

3 0
0 1/3

)

Squeeze



A =

(

1 0
0 0

)

Vertical projection on
the horizontal axis



A =

(

0 −1
0 1

)

Horizontal projection
on the line x + y = 0



A =

(

1 0
0 1

)

Identity



Eigenvalues and eigenvectors of a matrix

Definition. Let A be an n×n matrix. A number
λ ∈ R is called an eigenvalue of the matrix A if
Av = λv for a nonzero column vector v ∈ R

n.

The vector v is called an eigenvector of A

belonging to (or associated with) the eigenvalue λ.

Remarks. • Alternative notation:
eigenvalue = characteristic value,
eigenvector = characteristic vector.

• The zero vector is never considered an
eigenvector.



Example. A =

(

2 0
0 3

)

.

(

2 0
0 3

)(

1
0

)

=

(

2
0

)

= 2

(

1
0

)

,

(

2 0
0 3

)(

0
−2

)

=

(

0
−6

)

= 3

(

0
−2

)

.

Hence (1, 0) is an eigenvector of A belonging to the
eigenvalue 2, while (0,−2) is an eigenvector of A

belonging to the eigenvalue 3.


