
MATH 304

Linear Algebra

Lecture 21:
Eigenvalues and eigenvectors (continued).

Characteristic polynomial.



Eigenvalues and eigenvectors of a matrix

Definition. Let A be an n×n matrix. A number
λ ∈ R is called an eigenvalue of the matrix A if
Av = λv for a nonzero column vector v ∈ R

n.

The vector v is called an eigenvector of A

belonging to (or associated with) the eigenvalue λ.

Remarks. • Alternative notation:
eigenvalue = characteristic value,
eigenvector = characteristic vector.

• The zero vector is never considered an
eigenvector.



Example. A =

(

2 0
0 3

)

.

(

2 0
0 3

) (

1
0

)

=

(

2
0

)

= 2

(

1
0

)

,

(

2 0
0 3

) (

0
−2

)

=

(

0
−6

)

= 3

(

0
−2

)

.

Hence (1, 0) is an eigenvector of A belonging to the
eigenvalue 2, while (0,−2) is an eigenvector of A

belonging to the eigenvalue 3.



Example. A =

(

0 1
1 0

)

.

(

0 1
1 0

) (

1
1

)

=

(

1
1

)

,

(

0 1
1 0

) (

1
−1

)

=

(

−1
1

)

.

Hence (1, 1) is an eigenvector of A belonging to the
eigenvalue 1, while (1,−1) is an eigenvector of A

belonging to the eigenvalue −1.

Vectors v1 = (1, 1) and v2 = (1,−1) form a basis
for R

2. Consider a linear operator L : R
2 → R

2

given by L(x) = Ax. The matrix of L with respect

to the basis v1, v2 is B =

(

1 0
0 −1

)

.



Let A be an n×n matrix. Consider a linear
operator L : R

n → R
n given by L(x) = Ax.

Let v1, v2, . . . , vn be a nonstandard basis for R
n

and B be the matrix of the operator L with respect
to this basis.

Theorem The matrix B is diagonal if and only if
vectors v1, v2, . . . , vn are eigenvectors of A.

If this is the case, then the diagonal entries of the
matrix B are the corresponding eigenvalues of A.

Avi = λivi ⇐⇒ B =









λ1 O

λ2

. . .
O λn











Eigenspaces

Let A be an n×n matrix. Let v be an eigenvector
of A belonging to an eigenvalue λ.

Then Av = λv =⇒ Av = (λI )v =⇒ (A − λI )v = 0.

Hence v ∈ N(A − λI ), the nullspace of the matrix
A − λI .

Conversely, if x ∈ N(A − λI ) then Ax = λx.
Thus the eigenvectors of A belonging to the
eigenvalue λ are nonzero vectors from N(A − λI ).

Definition. If N(A − λI ) 6= {0} then it is called
the eigenspace of the matrix A corresponding to
the eigenvalue λ.



How to find eigenvalues and eigenvectors?

Theorem Given a square matrix A and a scalar λ,
the following statements are equivalent:

• λ is an eigenvalue of A,
• N(A − λI ) 6= {0},
• the matrix A − λI is singular,
• det(A − λI ) = 0.

Definition. det(A − λI ) = 0 is called the
characteristic equation of the matrix A.

Eigenvalues λ of A are roots of the characteristic
equation. Associated eigenvectors of A are nonzero
solutions of the equation (A − λI )x = 0.



Example. A =

(

a b

c d

)

.

det(A − λI ) =

∣

∣

∣

∣

a − λ b

c d − λ

∣

∣

∣

∣

= (a − λ)(d − λ) − bc

= λ2 − (a + d)λ + (ad − bc).



Example. A =





a11 a12 a13

a21 a22 a23

a31 a32 a33



.

det(A − λI ) =

∣

∣

∣

∣

∣

∣

a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

∣

∣

∣

∣

∣

∣

= −λ3 + c1λ
2 − c2λ + c3,

where c1 = a11 + a22 + a33 (the trace of A),

c2 =

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

+

∣

∣

∣

∣

a11 a13

a31 a33

∣

∣

∣

∣

+

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

,

c3 = det A.



Theorem. Let A = (aij) be an n×n matrix.
Then det(A − λI ) is a polynomial of λ of degree n:

det(A − λI ) = (−1)nλn + c1λ
n−1 + · · · + cn−1λ + cn.

Furthermore, (−1)n−1c1 = a11 + a22 + · · · + ann

and cn = det A.

Definition. The polynomial p(λ) = det(A − λI ) is
called the characteristic polynomial of the matrix A.

Corollary Any n×n matrix has at most n

eigenvalues.



Example. A =

(

2 1
1 2

)

.

Characteristic equation:

∣

∣

∣

∣

2 − λ 1
1 2 − λ

∣

∣

∣

∣

= 0.

(2 − λ)2 − 1 = 0 =⇒ λ1 = 1, λ2 = 3.

(A − I )x = 0 ⇐⇒

(

1 1
1 1

) (

x

y

)

=

(

0
0

)

⇐⇒

(

1 1
0 0

) (

x

y

)

=

(

0
0

)

⇐⇒ x + y = 0.

The general solution is (−t, t) = t(−1, 1), t ∈ R.
Thus v1 = (−1, 1) is an eigenvector associated
with the eigenvalue 1. The corresponding
eigenspace is the line spanned by v1.



(A − 3I )x = 0 ⇐⇒

(

−1 1
1 −1

) (

x

y

)

=

(

0
0

)

⇐⇒

(

1 −1
0 0

) (

x

y

)

=

(

0
0

)

⇐⇒ x − y = 0.

The general solution is (t, t) = t(1, 1), t ∈ R.

Thus v2 = (1, 1) is an eigenvector associated with
the eigenvalue 3. The corresponding eigenspace is
the line spanned by v2.



Summary. A =

(

2 1
1 2

)

.

• The matrix A has two eigenvalues: 1 and 3.

• The eigenspace of A associated with the
eigenvalue 1 is the line t(−1, 1).

• The eigenspace of A associated with the
eigenvalue 3 is the line t(1, 1).

• Eigenvectors v1 = (−1, 1) and v2 = (1, 1) of
the matrix A form an orthogonal basis for R

2.

• Geometrically, the mapping x 7→ Ax is a stretch
by a factor of 3 away from the line x + y = 0 in
the orthogonal direction.



Example. A =





1 1 −1
1 1 1
0 0 2



.

Characteristic equation:
∣

∣

∣

∣

∣

∣

1 − λ 1 −1
1 1 − λ 1
0 0 2 − λ

∣

∣

∣

∣

∣

∣

= 0.

Expand the determinant by the 3rd row:

(2 − λ)

∣

∣

∣

∣

1 − λ 1
1 1 − λ

∣

∣

∣

∣

= 0.

(

(1 − λ)2 − 1
)

(2 − λ) = 0 ⇐⇒ −λ(2 − λ)2 = 0

=⇒ λ1 = 0, λ2 = 2.



Ax = 0 ⇐⇒





1 1 −1
1 1 1
0 0 2









x

y

z



 =





0
0
0





Convert the matrix to reduced row echelon form:




1 1 −1
1 1 1
0 0 2



 →





1 1 −1
0 0 2
0 0 2



 →





1 1 0
0 0 1
0 0 0





Ax = 0 ⇐⇒

{

x + y = 0,
z = 0.

The general solution is (−t, t, 0) = t(−1, 1, 0),
t ∈ R. Thus v1 = (−1, 1, 0) is an eigenvector
associated with the eigenvalue 0. The corresponding
eigenspace is the line spanned by v1.



(A − 2I )x = 0 ⇐⇒





−1 1 −1
1 −1 1
0 0 0









x

y

z



 =





0
0
0





⇐⇒





1 −1 1
0 0 0
0 0 0









x

y

z



 =





0
0
0



 ⇐⇒ x − y + z = 0.

The general solution is x = t − s, y = t, z = s,
where t, s ∈ R. Equivalently,

x = (t − s, t, s) = t(1, 1, 0) + s(−1, 0, 1).

Thus v2 = (1, 1, 0) and v3 = (−1, 0, 1) are
eigenvectors associated with the eigenvalue 2.
The corresponding eigenspace is the plane spanned
by v2 and v3.



Summary. A =





1 1 −1
1 1 1
0 0 2



.

• The matrix A has two eigenvalues: 0 and 2.

• The eigenvalue 0 is simple: the corresponding
eigenspace is a line.

• The eigenvalue 2 is of multiplicity 2: the
corresponding eigenspace is a plane.

• Eigenvectors v1 = (−1, 1, 0), v2 = (1, 1, 0), and
v3 = (−1, 0, 1) of the matrix A form a basis for R

3.

• Geometrically, the map x 7→ Ax is the projection
on the plane Span(v2, v3) along the lines parallel to
v1 with the subsequent scaling by a factor of 2.



Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and L : V → V

be a linear operator. A number λ is called an
eigenvalue of the operator L if L(v) = λv for a
nonzero vector v ∈ V . The vector v is called an
eigenvector of L associated with the eigenvalue λ.

(If V is a functional space then eigenvectors are also
called eigenfunctions.)

If V = R
n then the linear operator L is given by

L(x) = Ax, where A is an n×n matrix.
In this case, eigenvalues and eigenvectors of the
operator L are precisely eigenvalues and
eigenvectors of the matrix A.



Eigenspaces

Let L : V → V be a linear operator.

For any λ ∈ R, let Vλ denotes the set of all
solutions of the equation L(x) = λx.

Then Vλ is a subspace of V since Vλ is the kernel

of a linear operator given by x 7→ L(x) − λx.

Vλ minus the zero vector is the set of all
eigenvectors of L associated with the eigenvalue λ.
In particular, λ ∈ R is an eigenvalue of L if and
only if Vλ 6= {0}.

If Vλ 6= {0} then it is called the eigenspace of L

corresponding to the eigenvalue λ.



Example. V = C∞(R), D : V → V , Df = f ′.

A function f ∈ C∞(R) is an eigenfunction of the
operator D belonging to an eigenvalue λ if
f ′(x) = λf (x) for all x ∈ R.

It follows that f (x) = ceλx , where c is a nonzero
constant.

Thus each λ ∈ R is an eigenvalue of D.
The corresponding eigenspace is spanned by eλx .



Theorem If v1, v2, . . . , vk are eigenvectors of a
linear operator L associated with distinct
eigenvalues λ1, λ2, . . . , λk , then v1, v2, . . . , vk are
linearly independent.

Corollary Let A be an n×n matrix such that the
characteristic equation det(A − λI ) = 0 has n

distinct real roots. Then R
n has a basis consisting

of eigenvectors of A.

Proof: Let λ1, λ2, . . . , λn be distinct real roots of
the characteristic equation. Any λi is an eigenvalue
of A, hence there is an associated eigenvector vi .
By the theorem, vectors v1, v2, . . . , vn are linearly
independent. Therefore they form a basis for R

n.



Theorem If λ1, λ2, . . . , λk are distinct real
numbers, then the functions eλ1x , eλ2x , . . . , eλkx are
linearly independent.

Proof: Consider a linear operator
D : C∞(R) → C∞(R) given by Df = f ′.

Then eλ1x , . . . , eλkx are eigenfunctions of D

associated with distinct eigenvalues λ1, . . . , λk .



Characteristic polynomial of an operator

Let L be a linear operator on a finite-dimensional
vector space V . Let u1,u2, . . . ,un be a basis for V .
Let A be the matrix of L with respect to this basis.

Definition. The characteristic polynomial of the
matrix A is called the characteristic polynomial
of the operator L.

Then eigenvalues of L are roots of its characteristic
polynomial.

Theorem. The characteristic polynomial of the
operator L is well defined. That is, it does not
depend on the choice of a basis.



Theorem. The characteristic polynomial of the
operator L is well defined. That is, it does not
depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a
different basis v1, v2, . . . , vn. Then A = UBU−1,
where U is the transition matrix from the basis
v1, . . . , vn to u1, . . . ,un. We obtain

det(A − λI ) = det(UBU−1 − λI )

= det
(

UBU−1 − U(λI )U−1
)

= det
(

U(B − λI )U−1
)

= det(U) det(B − λI ) det(U−1) = det(B − λI ).


