MATH 304
Linear Algebra

Lecture 22:
Diagonalization.

Review for Test 2.



Diagonalization

Let L be a linear operator on a finite-dimensional vector space
V. Then the following conditions are equivalent:

e the matrix of L with respect to some basis is diagonal;
e there exists a basis for V' formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these
conditions.

Let A be an nxn matrix. Then the following conditions are
equivalent:

e A is the matrix of a diagonalizable operator;

e A s similar to a diagonal matrix, i.e., it is represented as
A = UBU™1, where the matrix B is diagonal;

e there exists a basis for R” formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.
Otherwise A is called defective.



2 1
Example. A = <1 2).

e The matrix A has two eigenvalues: 1 and 3.
e The eigenspace of A associated with the
eigenvalue 1 is the line spanned by v; = (—1,1).
e The eigenspace of A associated with the
eigenvalue 3 is the line spanned by v, = (1,1).
e Eigenvectors v; and v, form a basis for R2.

Thus the matrix A is diagonalizable. Namely,
A= UBU™1 where

- (9 (1)



11 -1
Example. A=|1 1 1].
00 2

e The matrix A has two eigenvalues: 0 and 2.

e The eigenspace corresponding to O is spanned by
vi = (—1,1,0).

e The eigenspace corresponding to 2 is spanned by
vo =(1,1,0) and v3 =(—1,0,1).

e Eigenvectors vi,vs, v3 form a basis for R3.

Thus the matrix A is diagonalizable. Namely,
A = UBU™!, where
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Problem. Diagonalize the matrix A = (g i)
We need to find a diagonal matrix B and an
invertible matrix U such that A= UBU!.
Suppose that vi = (x1,y1), V2 = (X2, y2) is a basis
for R? formed by eigenvectors of A, i.e., Av; = \v;
for some \; € R. Then we can take

)\1 0 X1 X2
B = : U= :
<0 >‘2) ()/1 )/2)

Note that U is the transition matrix from the basis
V1, Vo to the standard basis.



Problem. Diagonalize the matrix A = (g i’)

Characteristic equation of A: ‘ 4—r 3

0 1-2)
4-N1-XN)=0 = M =4 h=1.

o

Associated eigenvectors: v; = (1,0), v, = (—1,1).
Thus A= UBU™!, where

() -
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Problem. Let A= <0 1

). Find A

We know that A = UBU!, where

=(1) =G )

Then A> = UBU'UBU'UBUUBU'UBU™?

1 -1\ (1024 0\ (1 1
— 51/-1 _
=ueru= (5 ) (5 ) (601)
(1024 -1\ (1 1\ (1024 1023
Lo 1J\o1) " Lo 1)



Problem. Let A= <

such that C2 =

We know that A = UBU™!, where

4 0 1 -1
e=(61) o= )
Suppose that D? = B for some matrix D. Let C = UDU™1.
Then C? = UDU'UDU! = UD?U~! = UBU! = A.

(V4 0\ (20
WecantakeD-(0 vi) = \o 1)

e DENCD -G

4 3 ) .
0 1). Find a matrix C



System of linear ODEs

% = 4x + 3y,
Problem. Solve a system dy
dat — V-

The system can be rewritten in vector form:

d
d—::Av, where A:(B1 :1)’) v:(;)

We know that A = UBU™!, where

(1) v )

W
W2
basis v; = (1,0), vo = (—1,1) of eigenvectors of A. Then
v=Uw = w=U" v

Let w = be coordinates of the vector v relative to the



It follows that

dw d, 1 )
dw _d L |
dt dt(U v)=U" dt U Ay — U AUw
dw
_1:4
thus Y Bw e i
dt s _ s

The general solution: wy(t) = cie*t, wo(t) = et
where ¢y, ¢, are arbitrary constants. Then

) -0~ (E) ()



There are two obstructions to diagonalization.
They are illustrated by the following examples.

Example 1. A= <(1) 1)

det(A— \) = (A —1)?. Hence A = 1 is the only
eigenvalue. The associated eigenspace is the line
t(1,0).

Example 2. A= <(1) _(1)>

det(A— M) =\ +1.

—> no real eigenvalues or eigenvectors

(However there are complex eigenvalues/eigenvectors.)



Topics for Test 2
Coordinates and linear transformations (Leon 3.5, 4.1-4.3)

Coordinates relative to a basis
Change of basis, transition matrix
Matrix transformations

Matrix of a linear mapping

Orthogonality (Leon 5.1-5.6)

Inner products and norms

Orthogonal complement, orthogonal projection
Least squares problems

The Gram-Schmidt orthogonalization process

Eigenvalues and eigenvectors (Leon 6.1, 6.3)

e FEigenvalues, eigenvectors, eigenspaces
e Characteristic polynomial
e Diagonalization



Sample problems for Test 2

Problem 1 (15 pts.) Let M55(R) denote the vector space
of 2 x 2 matrices with real entries. Consider a linear operator
L . MQQ(R) — M272(R) given by

Eu)=Gu)GE)

Find the matrix of the operator L with respect to the basis

10 01 0 0 00
i-(o0)-5-(00) 8-(10) &= (0 1)



Problem 2 (30 pts.) Let A=

O =
N =N
== o

(i) Find all eigenvalues of the matrix A.

(ii) For each eigenvalue of A, find an associated eigenvector.
(iii) Is the matrix A diagonalizable? Explain.

(iv) Find all eigenvalues of the matrix A2.

Problem 3 (20 pts.) Find a linear polynomial which is the
best least squares fit to the following data:

x | =2]-1]0]1]2

| =3 211125




Problem 4 (25 pts.) Let V be a subspace of R* spanned
by the vectors x; = (1,1,1,1) and x, = (1,0, 3,0).
(i) Find an orthonormal basis for V.

(ii) Find an orthonormal basis for the orthogonal complement
%8

Bonus Problem 5 (15 pts.) Let L: V — W be a linear
mapping of a finite-dimensional vector space V to a vector
space W. Show that

dim Range(L) + dimker(L) = dim V.



Problem 1. Let M;,(RR) denote the vector space of 2x2
matrices with real entries. Consider a linear operator

L: Myo(R) — Myo(R) given by

(0)-(00

Find the matrix of the operator L with respect to the basis
10 01 00 00
f-o0) &= (00) 5-(10) &= (0 1)

Let M, denote the desired matrix.

By definition, M, is a 4x4 matrix whose columns are
coordinates of the matrices L(E;), L(Ey), L(E3), L(Es)
with respect to the basis Ej, B>, E3, E4.



1E1+2E,+0E3+0E,,

() (2
DIPRE
)G 3)-(2)
)( )

- 3E1+4E2+0E3+0E4,

)= (

1 2
3 4

00
00

O0E; +0Ey+1E3+2E,,

12\ B
10 34) \12)
00 00
0 1 3 4

= 0B +0E,+3E3+4E,.

)= (
|

1 2
3 4

(

It follows that

oSO mMm<
O O~ AN
N < O O

— AN O O



Thus the relation

Ee)-(u)G7)

is equivalent to the relation

X1 1 300 X
4] o 0 013 z
wy 00 2 4 w



1 2
11
0 2

(i) Find all eigenvalues of the matrix A.

0
Problem 2. Let A= 1
1

The eigenvalues of A are roots of the characteristic equation
det(A — A\l) = 0. We obtain that

1-X 2 0

det(A—M)=| 1 1-X 1
0 2 1-2)

=(1=A)°=2(1-X2)—-2(1-X)=(1-XN)(1-X1)>-4)
=(1-N(1-N=2)((1=N)+2)=-(A=1)A+1)(A-23).

Hence the matrix A has three eigenvalues: —1, 1, and 3.



Problem 2. Let A=

O =
N =N
== o

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (x,y,z) of the matrix A associated with
an eigenvalue \ is a nonzero solution of the vector equation

1-XA 2 0 x 0
(A-AMw=0 < | 1 1-x 1 y| =10
0 2 1-)\z 0

To solve the equation, we convert the matrix A — Al to
reduced row echelon form.



First consider the case A = —1. The row reduction yields

2 20 110
A+Il=11 2 1] =11 2 1
0 2 2 0 2 2

110 110 1 0 -1
—-!1011] —-—1011)] —1]0 1 1
0 2 2 0 00O 00 O
Hence
x—z=0,
A+lv=0 — {y+z:0

The general solution is x =t, y = —t, z=1t, where t € R.
In particular, v; = (1,—1,1) is an eigenvector of A associated
with the eigenvalue —1.



Secondly, consider the case A = 1. The row reduction yields

0 20 1 01 1 01 1 01
A-I=11 01| -0 20)—({01O0})—-1]01 0]
0 20 0 20 0 2 0 0 0O

Hence

The general solution is x = —t, y =0, z=1t, where t € R.
In particular, v, = (—1,0,1) is an eigenvector of A associated

with the eigenvalue 1.



Finally, consider the case A = 3. The row reduction yields

-2 2 0 1 -1 0 1 -1

A-3l = 1 -2 1|]—-|1 -2 1]—1(0 -1
0o 2 =2 0 2 =2 0o 2

1 -1 0 1 -1 0 10 -1
-0 1 -1} -0 1 -1] -0 1 -1
0 2 =2 0 0 O 00 O

x—z=0,
(A=3llv=0 — {y—z:o.

The general solutionis x =t, y =t, z=1t, where t € R.
In particular, v3 =(1,1,1) is an eigenvector of A associated
with the eigenvalue 3.

0
1
-2



1 20
Problem 2. LetA=[1 1 1
0 21

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for R3
formed by its eigenvectors.

Namely, the vectors v; = (1,—1,1), v, = (—1,0,1), and

vz = (1,1,1) are eigenvectors of the matrix A belonging to
distinct eigenvalues. Therefore these vectors are linearly
independent. It follows that vq,v»,v3 is a basis for R3,

Alternatively, the existence of a basis for R® consisting of
eigenvectors of A already follows from the fact that the matrix
A has three distinct eigenvalues.



Problem 2. Let A=

O = =
N =N
== o

(iv) Find all eigenvalues of the matrix A2,

Suppose that v is an eigenvector of the matrix A associated
with an eigenvalue A, thatis, v # 0 and Av = Av. Then

A%v = A(Av) = A(\v) = M(Av) = A(A\v) = M.

Therefore v is also an eigenvector of the matrix A® and the
associated eigenvalue is \2. We already know that the matrix
A has eigenvalues —1, 1, and 3. It follows that A? has
eigenvalues 1 and 9.

Since a 3x3 matrix can have up to 3 eigenvalues, we need an
additional argument to show that 1 and 9 are the only
eigenvalues of A%2. One reason is that the eigenvalue 1 has
multiplicity 2.



Problem 3. Find a linear polynomial which is the best least
squares fit to the following data:

x | =2]-1]0[1]2
f(x)| -3]-2]1]2]5

We are looking for a function f(x) = ¢; + cx, where ¢, ¢
are unknown coefficients. The data of the problem give rise
to an overdetermined system of linear equations in variables ¢;
and ¢:

(o] —2C2 = —3,
G — 6 = —2,
Clz].,

L+ = 2,
C1+2C2 =b.

This system is inconsistent.



We can represent the system as a matrix equation Ac =y,
where

1 -2 -3
1 -1 -2
A=|1 o], c_<cl>, y=1| 1
1 1 @ 2
1 2 5

The least squares solution ¢ of the above system is a solution
of the normal system AT Ac = ATy:

1 -2 -3
<1 1111>1_1<q)<1 1111)‘?
2 -1012)f; ;|\e -2 -1 0 1 2 5
1 2 5

= (0)8)-(n) = 183"

Thus the function f(x) = 2 4 2x is the best least squares fit
to the above data among linear polynomials.






Problem 4. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0,3,0).
(i) Find an orthonormal basis for V.

First we apply the Gram-Schmidt orthogonalization process to
vectors x;, X, and obtain an orthogonal basis vy, v, for the
subspace V:

Vi = X1 = (1, 1, 1, 1),

X2 - V1
Vo = Xo—

4
= (1,0,3,0)—(1,1,1,1) = (0, —1,2, —1).
V1-V1v1 (7”)4(7”) (7 o )

Then we normalize vectors vy, v, to obtain an orthonormal
basis wy, w, for V:




Problem 4. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0,3,0).

(ii) Find an orthonormal basis for the orthogonal complement
v+

Since the subspace V is spanned by vectors (1,1,1,1) and
(1,0,3,0), it is the row space of the matrix

1111
A= (1 0 3 0) '
Then the orthogonal complement V* is the nullspace of A.

To find the nullspace, we convert the matrix A to reduced row
echelon form:

1111_}1030_}10 30
1030 1111 01 -2 1)



Hence a vector (x1, X2, X3, x3) € R* belongs to V' if and only
if

10 30 x| (0
01 -21 x3 |  \O
Xa
x1+3x3=0 x1 = —3x3
{X2—2X3—|—X4:0 = {x2:2x3—x4

The general solution of the system is (x, X2, X3, X4) =
= (—3t,2t — s, t,s) = t(—3,2,1,0) + s(0,—1,0,1), where
t,s € R.

It follows that V* is spanned by vectors x3 = (0,—1,0,1)
and x4 = (—3,2,1,0).



The vectors x3 = (0,—1,0,1) and x4 = (—3,2,1,0) form a

basis for the subspace V.
It remains to orthogonalize and normalize this basis:

V3 = X3 = (0, —].,07 1),

Xg4 * V3 —2
= X4 — =(-3,2,1,0) — —(0,-1,0,1
V4 X4 V3-V3 ( 777) 2(7 77)
=(-3,1,1,1),

[vs| = V2 = W3 = IzZH = %(07 —-1,0,1),

[va| = V12=2V3 = wy= "

[|va

= 55(=3,1,1,1).

Thus the vectors w; = f(O —-1,0,1) and
wy = 2f( 3,1,1,1) form an orthonormal basis for V+.



Problem 4. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0, 3,0).
(i) Find an orthonormal basis for V.

(ii) Find an orthonormal basis for the orthogonal complement
v+

Alternative solution: First we extend the set x;,X, to a basis
X1, X2, X3, X4 for R*. Then we orthogonalize and normalize
the latter. This yields an orthonormal basis wy, w,, w3, wy
for R*.

By construction, wy, w, is an orthonormal basis for V.
It follows that ws, w, is an orthonormal basis for V*.



The set x; = (1,1,1,1), x, = (1,0,3,0) can be extended to
a basis for R* by adding two vectors from the standard basis.

For example, we can add vectors e; = (0,0,1,0) and

es = (0,0,0,1). To show that xi,x,,e3, e, is indeed a basis
for R*, we check that the matrix whose rows are these vectors
is nonsingular:

SEH I
0 010 00 1
0 001



To orthogonalize the basis xi, x5, e3,e4, we apply the
Gram-Schmidt process:

Vi = X1 = (1, 17 ]., 1),

X2y = (1,0,3,0)—%(1,1,1,1) = (0, 1,2, 1),
Vi -Vp

Vo = Xo—

€3 - Vg €3 - Vo 1
=(0,0,1,0) — #(1,1,1,1)—
viovil vpevg (0.0.1.0) =3(1. 1.1.1)

_%(Oa _1a2a _1) - (_%a %a %a %) - 1_12(_3a ]-7 17 1)1

€, V1 €4 - Vo €y - V3
Vi =€, — Vi — Vo — vz =(0,0,0,1)—
Vi -Vp Vo - Vo V3 - V3

—1(1,1,1,1) = 2(0,-1,2,-1) — 33 - (-3, 1,1,1) =
=(0,-1,0,3) = 1(0,-1,0,1).




It remains to normalize vectors v; = (1,1,1,1),

YA R

va=(0,-1,2, 1), vy = 1(=3,1,1,1), vs = 1(0,-1,0,1):
||V1|| =2 = Wi = m = %(1,171,1)

Hv2|| = \/6 — Wy — V2 —

Ivsll = 7z =53 = W=y =53(-3111)

HV4H = % = W4 = = %(07_17071)

Thus wy, w, is an orthonormal basis for V' while ws, wy is an
orthonormal basis for V.



Bonus Problem 5. Let L: V — W be a linear mapping of
a finite-dimensional vector space V to a vector space W.
Show that dim Range(L) + dimker(L) = dim V.

The kernel ker(L) is a subspace of V. It is finite-dimensional
since the vector space V is.

Take a basis vy, vy, ..., v, for the subspace ker(L), then
extend it to a basis vi,Vs, ..., Vi, Uy, Uy, ..., U, for the entire
space V.

Claim Vectors L(uy),L(uz),...,L(uy,) form a basis for the
range of L.

Assuming the claim is proved, we obtain
dimRange(L) = m, dimker(L) =k, dimV =k+m.



Claim Vectors L(uy),L(uz),...,L(uy,) form a basis for the
range of L.

Proof (spanning): Any vector w € Range(L) is represented
as w = L(v), where v V. Then

V = 1Vi + aoVp + - - Vi + Brug + Boup + - - 4 Bpup,
for some «;, B; € R. It follows that
w = L(v) = aiL(vi)+---+axl(vi)+GiL(ur)+- - -+ Bml(unm)
= G1l(uy) + - - + Bml(uny).

Note that L(v;) = 0 since v; € ker(L).
Thus Range(L) is spanned by the vectors L(uy),..., L(un).



Claim Vectors L(uy), L(uy),...,L(u,) form a basis for the
range of L.

Proof (linear independence): Suppose that
tiL(uy) + toL(u) + -+ + tl(uy) =0
for some t; € R. Let u= tju; + tbup, + - - - + t,u,,. Since
L(u) = t1L(uy) + toL(up) + - - - + tymL(u,) = 0,

the vector u belongs to the kernel of L. Therefore
U= 5Vi + SHVp + - - + v, for some s; € R. It follows that

tiup+buy+-- -4+ tpU,y — SV —SHVo— - - — S5 Ve = uU—U = 0
Linear independence of vectors vi, ...,V ug,...,u, implies
that t; =---=1t, =0 (aswell as s; =--- =5, =0).

Thus the vectors L(uy), L(uz), ..., L(us,) are linearly

independent.



