
MATH 304–503 Spring 2010

Sample problems for Test 1: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Find a quadratic polynomial p(x) such that p(1) = 1, p(2) = 3,
and p(3) = 7.

Let p(x) = ax2 + bx + c. Then p(1) = a + b + c, p(2) = 4a + 2b + c, and p(3) = 9a + 3b + c. The
coefficients a, b, and c have to be chosen so that







a + b + c = 1,

4a + 2b + c = 3,

9a + 3b + c = 7.

We solve this system of linear equations using elementary operations:






a + b + c = 1
4a + 2b + c = 3
9a + 3b + c = 7

⇐⇒







a + b + c = 1
3a + b = 2
9a + 3b + c = 7

⇐⇒







a + b + c = 1
3a + b = 2
8a + 2b = 6

⇐⇒







a + b + c = 1
3a + b = 2
4a + b = 3

⇐⇒







a + b + c = 1
3a + b = 2
a = 1

⇐⇒







a + b + c = 1
b = −1
a = 1

⇐⇒







c = 1
b = −1
a = 1

Thus the desired polynomial is p(x) = x2 − x + 1.

Problem 2 (25 pts.) Let A =









1 −2 4 1
2 3 2 0
2 0 −1 1
2 0 0 1









.

(i) Evaluate the determinant of the matrix A.

First let us subtract 2 times the fourth column of A from the first column:
∣

∣

∣

∣

∣

∣

∣

∣

1 −2 4 1
2 3 2 0
2 0 −1 1
2 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

−1 −2 4 1
2 3 2 0
0 0 −1 1
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

.

Now the determinant can be easily expanded by the fourth row:
∣

∣

∣

∣

∣

∣

∣

∣

−1 −2 4 1
2 3 2 0
0 0 −1 1
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−1 −2 4
2 3 2
0 0 −1

∣

∣

∣

∣

∣

∣

.

The 3 × 3 determinant is easily expanded by the third row:
∣

∣

∣

∣

∣

∣

−1 −2 4
2 3 2
0 0 −1

∣

∣

∣

∣

∣

∣

= (−1)

∣

∣

∣

∣

−1 −2
2 3

∣

∣

∣

∣

.
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Thus

det A = −

∣

∣

∣

∣

−1 −2
2 3

∣

∣

∣

∣

= −1.

Another way to evaluate detA is to reduce the matrix A to the identity matrix using elementary
row operations (see below). This requires much more work but we are going to do it anyway, to find
the inverse of A.

(ii) Find the inverse matrix A−1.

First we merge the matrix A with the identity matrix into one 4 × 8 matrix

(A | I) =









1 −2 4 1 1 0 0 0
2 3 2 0 0 1 0 0
2 0 −1 1 0 0 1 0
2 0 0 1 0 0 0 1









.

Then we apply elementary row operations to this matrix until the left part becomes the identity
matrix.

Subtract 2 times the first row from the second row:








1 −2 4 1 1 0 0 0
2 3 2 0 0 1 0 0
2 0 −1 1 0 0 1 0
2 0 0 1 0 0 0 1









→









1 −2 4 1 1 0 0 0
0 7 −6 −2 −2 1 0 0
2 0 −1 1 0 0 1 0
2 0 0 1 0 0 0 1









.

Subtract 2 times the first row from the third row:








1 −2 4 1 1 0 0 0
0 7 −6 −2 −2 1 0 0
2 0 −1 1 0 0 1 0
2 0 0 1 0 0 0 1









→









1 −2 4 1 1 0 0 0
0 7 −6 −2 −2 1 0 0
0 4 −9 −1 −2 0 1 0
2 0 0 1 0 0 0 1









.

Subtract 2 times the first row from the fourth row:








1 −2 4 1 1 0 0 0
0 7 −6 −2 −2 1 0 0
0 4 −9 −1 −2 0 1 0
2 0 0 1 0 0 0 1









→









1 −2 4 1 1 0 0 0
0 7 −6 −2 −2 1 0 0
0 4 −9 −1 −2 0 1 0
0 4 −8 −1 −2 0 0 1









.

Subtract 2 times the fourth row from the second row:








1 −2 4 1 1 0 0 0
0 7 −6 −2 −2 1 0 0
0 4 −9 −1 −2 0 1 0
0 4 −8 −1 −2 0 0 1









→









1 −2 4 1 1 0 0 0
0 −1 10 0 2 1 0 −2
0 4 −9 −1 −2 0 1 0
0 4 −8 −1 −2 0 0 1









.

Subtract the fourth row from the third row:








1 −2 4 1 1 0 0 0
0 −1 10 0 2 1 0 −2
0 4 −9 −1 −2 0 1 0
0 4 −8 −1 −2 0 0 1









→









1 −2 4 1 1 0 0 0
0 −1 10 0 2 1 0 −2
0 0 −1 0 0 0 1 −1
0 4 −8 −1 −2 0 0 1









.
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Add 4 times the second row to the fourth row:








1 −2 4 1 1 0 0 0
0 −1 10 0 2 1 0 −2
0 0 −1 0 0 0 1 −1
0 4 −8 −1 −2 0 0 1









→









1 −2 4 1 1 0 0 0
0 −1 10 0 2 1 0 −2
0 0 −1 0 0 0 1 −1
0 0 32 −1 6 4 0 −7









.

Add 32 times the third row to the fourth row:








1 −2 4 1 1 0 0 0
0 −1 10 0 2 1 0 −2
0 0 −1 0 0 0 1 −1
0 0 32 −1 6 4 0 −7









→









1 −2 4 1 1 0 0 0
0 −1 10 0 2 1 0 −2
0 0 −1 0 0 0 1 −1
0 0 0 −1 6 4 32 −39









.

Add 10 times the third row to the second row:








1 −2 4 1 1 0 0 0
0 −1 10 0 2 1 0 −2
0 0 −1 0 0 0 1 −1
0 0 0 −1 6 4 32 −39









→









1 −2 4 1 1 0 0 0
0 −1 0 0 2 1 10 −12
0 0 −1 0 0 0 1 −1
0 0 0 −1 6 4 32 −39









.

Add the fourth row to the first row:








1 −2 4 1 1 0 0 0
0 −1 0 0 2 1 10 −12
0 0 −1 0 0 0 1 −1
0 0 0 −1 6 4 32 −39









→









1 −2 4 0 7 4 32 −39
0 −1 0 0 2 1 10 −12
0 0 −1 0 0 0 1 −1
0 0 0 −1 6 4 32 −39









.

Add 4 times the third row to the first row:








1 −2 4 0 7 4 32 −39
0 −1 0 0 2 1 10 −12
0 0 −1 0 0 0 1 −1
0 0 0 −1 6 4 32 −39









→









1 −2 0 0 7 4 36 −43
0 −1 0 0 2 1 10 −12
0 0 −1 0 0 0 1 −1
0 0 0 −1 6 4 32 −39









.

Subtract 2 times the second row from the first row:








1 −2 0 0 7 4 36 −43
0 −1 0 0 2 1 10 −12
0 0 −1 0 0 0 1 −1
0 0 0 −1 6 4 32 −39









→









1 0 0 0 3 2 16 −19
0 −1 0 0 2 1 10 −12
0 0 −1 0 0 0 1 −1
0 0 0 −1 6 4 32 −39









.

Multiply the second, the third, and the fourth rows by −1:









1 0 0 0 3 2 16 −19
0 −1 0 0 2 1 10 −12
0 0 −1 0 0 0 1 −1
0 0 0 −1 6 4 32 −39









→









1 0 0 0 3 2 16 −19
0 1 0 0 −2 −1 −10 12
0 0 1 0 0 0 −1 1
0 0 0 1 −6 −4 −32 39









.

Finally the left part of our 4 × 8 matrix is transformed into the identity matrix. Therefore the
current right part is the inverse matrix of A. Thus

A−1 =









1 −2 4 1
2 3 2 0
2 0 −1 1
2 0 0 1









−1

=









3 2 16 −19
−2 −1 −10 12

0 0 −1 1
−6 −4 −32 39









.

3



As a byproduct, we can evaluate the determinant of A. We have transformed A into the identity
matrix using elementary row operations. These included no row exchanges and three row multiplica-
tions, each time by −1. It follows that det I = (−1)3 detA. Hence det A = −det I = −1.

Problem 3 (20 pts.) Determine which of the following subsets of R
3 are subspaces.

Briefly explain.

(i) The set S1 of vectors (x, y, z) ∈ R
3 such that xyz = 0.

(ii) The set S2 of vectors (x, y, z) ∈ R
3 such that x + y + z = 0.

(iii) The set S3 of vectors (x, y, z) ∈ R
3 such that y2 + z2 = 0.

(iv) The set S4 of vectors (x, y, z) ∈ R
3 such that y2 − z2 = 0.

A subset of R
3 is a subspace if it is closed under addition and scalar multiplication. Besides, a

subspace must not be empty.
It is easy to see that each of the sets S1, S2, S3, and S4 contains the zero vector (0, 0, 0) and all

these sets are closed under scalar multiplication.
The set S1 is the union of three planes x = 0, y = 0, and z = 0. It is not closed under addition as

the following example shows: (1, 1, 0) + (0, 0, 1) = (1, 1, 1).
S2 is a plane passing through the origin. Obviously, it is closed under addition.
The condition y2 +z2 = 0 is equivalent to y = z = 0. Hence S3 is a line passing through the origin.

It is closed under addition.
Since y2 − z2 = (y − z)(y + z), the set S4 is the union of two planes y − z = 0 and y + z = 0. The

following example shows that S4 is not closed under addition: (0, 1, 1) + (0, 1,−1) = (0, 2, 0).
Thus S2 and S3 are subspaces of R

3 while S1 and S4 are not.

Problem 4 (30 pts.) Let B =









0 −1 4 1
1 1 2 −1

−3 0 −1 0
2 −1 0 1









.

(i) Find the rank and the nullity of the matrix B.

The rank (dimension of the row space) and the nullity (dimension of the nullspace) of a matrix
are preserved under elementary row operations. We apply such operations to convert the matrix B

into row echelon form.
First interchange the first row with the second row:









0 −1 4 1
1 1 2 −1

−3 0 −1 0
2 −1 0 1









→









1 1 2 −1
0 −1 4 1

−3 0 −1 0
2 −1 0 1









.

Add 3 times the first row to the third row, then subtract 2 times the first row from the fourth row:









1 1 2 −1
0 −1 4 1

−3 0 −1 0
2 −1 0 1









→









1 1 2 −1
0 −1 4 1
0 3 5 −3
2 −1 0 1









→









1 1 2 −1
0 −1 4 1
0 3 5 −3
0 −3 −4 3









.
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Multiply the second row by −1:








1 1 2 −1
0 −1 4 1
0 3 5 −3
0 −3 −4 3









→









1 1 2 −1
0 1 −4 −1
0 3 5 −3
0 −3 −4 3









.

Add the fourth row to the third row:








1 1 2 −1
0 1 −4 −1
0 3 5 −3
0 −3 −4 3









→









1 1 2 −1
0 1 −4 −1
0 0 1 0
0 −3 −4 3









.

Add 3 times the second row to the fourth row:








1 1 2 −1
0 1 −4 −1
0 0 1 0
0 −3 −4 3









→









1 1 2 −1
0 1 −4 −1
0 0 1 0
0 0 −16 0









.

Add 16 times the third row to the fourth row:








1 1 2 −1
0 1 −4 −1
0 0 1 0
0 0 −16 0









→









1 1 2 −1
0 1 −4 −1
0 0 1 0
0 0 0 0









.

Now that the matrix is in row echelon form, its rank equals the number of nonzero rows, which is
3. Since

(rank of B) + (nullity of B) = (the number of columns of B) = 4,

it follows that the nullity of B equals 1.

(ii) Find a basis for the row space of B, then extend this basis to a basis for R
4.

The row space of a matrix is invariant under elementary row operations. Therefore the row space
of the matrix B is the same as the row space of its row echelon form









1 1 2 −1
0 1 −4 −1
0 0 1 0
0 0 0 0









.

The nonzero rows of the latter are linearly independent so that they form a basis for its row space.
Hence the vectors v1 = (1, 1, 2,−1), v2 = (0, 1,−4,−1), and v3 = (0, 0, 1, 0) form a basis for the row
space of B.

To extend the basis v1,v2,v3 to a basis for R
4, we need a vector v4 ∈ R

4 that is not a linear
combination of v1,v2,v3. It is known that at least one of the vectors e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0),
e3 = (0, 0, 1, 0), and e4 = (0, 0, 0, 1) can be chosen as v4. In particular, the vectors v1,v2,v3, e4 form
a basis for R

4. This follows from the fact that the 4 × 4 matrix whose rows are these vectors is not
singular:

∣

∣

∣

∣

∣

∣

∣

∣

1 1 2 −1
0 1 −4 −1
0 0 1 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

= 1 6= 0.
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(iii) Find a basis for the nullspace of B.

The nullspace of B is the solution set of the system of linear homogeneous equations with B as
the coefficient matrix. To solve the system, we convert the matrix B to reduced row echelon form.
The row echelon form of B has been obtained earlier:









1 1 2 −1
0 1 −4 −1
0 0 1 0
0 0 0 0









.

Add 4 times the third row to the second row, then subtract 2 times the third row from the first row:









1 1 2 −1
0 1 −4 −1
0 0 1 0
0 0 0 0









→









1 1 2 −1
0 1 0 −1
0 0 1 0
0 0 0 0









→









1 1 0 −1
0 1 0 −1
0 0 1 0
0 0 0 0









.

Subtract the second row from the first row:








1 1 0 −1
0 1 0 −1
0 0 1 0
0 0 0 0









→









1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 0









.

We have obtained the reduced row echelon form of the matrix B. Its nullspace is the same as the
nullspace of B. Hence a vector (x1, x2, x3, x4) ∈ R

4 belongs to the nullspace of B if and only if







x1 = 0,

x2 − x4 = 0,

x3 = 0
⇐⇒







x1 = 0,

x2 = x4,

x3 = 0.

The general solution of this system is (x1, x2, x3, x4) = (0, t, 0, t) = t(0, 1, 0, 1), t ∈ R. Thus the
nullspace of the matrix B is spanned by the vector (0, 1, 0, 1). This vector forms a basis for the
nullspace.

Bonus Problem 5 (15 pts.) Show that the functions f1(x) = x, f2(x) = xex, and
f3(x) = e−x are linearly independent in the vector space C∞(R).

Suppose that af1(x) + bf2(x) + cf3(x) = 0 for all x ∈ R, where a, b, c are constants. We have to
show that a = b = c = 0.

Differentiating the identity af1(x)+ bf2(x)+ cf3(x) = 0 four times, we obtain four more identities:

ax + bxex + ce−x = 0,

a + bex + bxex − ce−x = 0,

2bex + bxex + ce−x = 0,

3bex + bxex − ce−x = 0,

4bex + bxex + ce−x = 0.

Subtracting the third identity from the fifth one, we obtain 2bex = 0, which implies that b = 0.
Substituting b = 0 in the third identity, we obtain ce−x = 0, which implies that c = 0. Substituting
b = 0 and c = 0 in the second identity, we obtain a = 0.

6



Alternative solution: Suppose that ax+ bxex + ce−x = 0 for all x ∈ R, where a, b, c are constants.
We have to show that a = b = c = 0.

For any x 6= 0 divide both sides of the identity by xex:

ae−x + b + cx−1e−2x = 0.

Note that e−x → 0 and x−1e−2x → 0 as x → +∞. Hence the left-hand side approaches b as x → +∞.
It follows that b = 0. Now ax + ce−x = 0 for all x ∈ R. For any x 6= 0 divide both sides of the latter
identity by x:

a + cx−1e−x = 0.

Since x−1e−x → 0 as x → +∞, the left-hand side approaches a as x → +∞. It follows that a = 0.
Then ce−x = 0, which implies that c = 0.

Bonus Problem 6 (15 pts.) Let V be a finite-dimensional vector space and V0 be a
proper subspace of V (where proper means that V0 6= V ). Prove that dim V0 < dim V .

Any linearly independent set in a vector space can be extended to a basis. Since the vector space
V is finite dimensional, it does not admit infinitely many linearly independent vectors. Clearly, the
same is true for the subspace V0. It follows that V0 is also finite-dimensional.

Let v1,v2, . . . ,vk be a basis for V0. The vectors v1,v2, . . . ,vk are linearly independent in V since
they are linearly independent in V0. Therefore we can extend this collection of vectors to a basis for
V by adding some vectors w1, . . . ,wm. As V0 6= V , we do need to add some vectors, i.e., m ≥ 1. Thus
dimV0 = k and dimV = k + m > k.
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