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Linear Algebra

Lecture 6:

Diagonal matrices.

Inverse matrix.



Matrices

Definition. An m-by-n matrix is a rectangular
array of numbers that has m rows and n columns:











a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn











Notation: A = (aij)1≤i≤n, 1≤j≤m or simply A = (aij)
if the dimensions are known.



Matrix algebra: linear operations

Addition: two matrices of the same dimensions
can be added by adding their corresponding entries.

Scalar multiplication: to multiply a matrix A by
a scalar r , one multiplies each entry of A by r .

Zero matrix O: all entries are zeros.

Negative: −A is defined as (−1)A.

Subtraction: A − B is defined as A + (−B).

As far as the linear operations are concerned, the
m×n matrices can be regarded as mn-dimensional
vectors.



Matrix algebra: matrix multiplication

The product of matrices A and B is defined if the
number of columns in A matches the number of
rows in B .

Definition. Let A = (aik) be an m×n matrix and
B = (bkj) be an n×p matrix. The product AB is
defined to be the m×p matrix C = (cij) such that

cij =
∑n

k=1
aikbkj for all indices i , j .

That is, matrices are multiplied row by column.



A =











a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...

am1 am2 . . . amn











=











v1

v2

...
vm











B =











b11 b12 . . . b1p

b21 b22 . . . b2p
...

... . . . ...
bn1 bn2 . . . bnp











= (w1,w2, . . . ,wp)

=⇒ AB =











v1·w1 v1·w2 . . . v1·wp

v2·w1 v2·w2 . . . v2·wp
...

... . . . ...
vm·w1 vm·w2 . . . vm·wp













Diagonal matrices

If A = (aij) is a square matrix, then the entries aii

are called diagonal entries. A square matrix is
called diagonal if all non-diagonal entries are zeros.

Example.





7 0 0
0 1 0
0 0 2



, denoted diag(7, 1, 2).

Let A = diag(s1, s2, . . . , sn), B = diag(t1, t2, . . . , tn).

Then A + B = diag(s1 + t1, s2 + t2, . . . , sn + tn),

rA = diag(rs1, rs2, . . . , rsn).



Example.




7 0 0
0 1 0
0 0 2









−1 0 0
0 5 0
0 0 3



 =





−7 0 0
0 5 0
0 0 6





Theorem Let A = diag(s1, s2, . . . , sn),
B = diag(t1, t2, . . . , tn).

Then A + B = diag(s1 + t1, s2 + t2, . . . , sn + tn),

rA = diag(rs1, rs2, . . . , rsn).

AB = diag(s1t1, s2t2, . . . , sntn).

In particular, diagonal matrices always commute
(i.e., AB = BA).



Example.




7 0 0
0 1 0
0 0 2









a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





7a11 7a12 7a13

a21 a22 a23

2a31 2a32 2a33





Theorem Let D = diag(d1, d2, . . . , dm) and A be
an m×n matrix. Then the matrix DA is obtained
from A by multiplying the ith row by di for
i = 1, 2, . . . , m:

A =











v1

v2

...
vm











=⇒ DA =











d1v1

d2v2

...
dmvm













Example.




a11 a12 a13

a21 a22 a23

a31 a32 a33









7 0 0
0 1 0
0 0 2



 =





7a11 a12 2a13

7a21 a22 2a23

7a31 a32 2a33





Theorem Let D = diag(d1, d2, . . . , dn) and A be
an m×n matrix. Then the matrix AD is obtained
from A by multiplying the ith column by di for
i = 1, 2, . . . , n:

A = (w1,w2, . . . ,wn)

=⇒ AD = (d1w1, d2w2, . . . , dnwn)



Identity matrix

Definition. The identity matrix (or unit matrix) is
a diagonal matrix with all diagonal entries equal to 1.
The n×n identity matrix is denoted In or simply I .

I1 = (1), I2 =

(

1 0
0 1

)

, I3 =





1 0 0
0 1 0
0 0 1



.

In general, I =







1 0 . . . 0
0 1 . . . 0...

... . . . ...
0 0 . . . 1






.

Theorem. Let A be an arbitrary m×n matrix.
Then ImA = AIn = A.



Inverse matrix

Let Mn(R) denote the set of all n×n matrices with
real entries. We can add, subtract, and multiply

elements of Mn(R). What about division?

Definition. Let A ∈ Mn(R). Suppose there exists
an n×n matrix B such that

AB = BA = In.

Then the matrix A is called invertible and B is
called the inverse of A (denoted A−1).

A non-invertible square matrix is called singular.

AA−1 = A−1A = I



Examples

A =

(

1 1
0 1

)

, B =

(

1 −1
0 1

)

, C =

(

−1 0
0 1

)

.

AB =

(

1 1
0 1

) (

1 −1
0 1

)

=

(

1 0
0 1

)

,

BA =

(

1 −1
0 1

) (

1 1
0 1

)

=

(

1 0
0 1

)

,

C 2 =

(

−1 0
0 1

) (

−1 0
0 1

)

=

(

1 0
0 1

)

.

Thus A−1 = B , B−1 = A, and C−1 = C .



Inverting diagonal matrices

Theorem A diagonal matrix D = diag(d1, . . . , dn)
is invertible if and only if all diagonal entries are
nonzero: di 6= 0 for 1 ≤ i ≤ n.

If D is invertible then D−1 = diag(d−1

1
, . . . , d−1

n ).











d1 0 . . . 0
0 d2 . . . 0
...

... . . . ...
0 0 . . . dn











−1

=











d−1

1
0 . . . 0

0 d−1

2
. . . 0

...
... . . . ...

0 0 . . . d−1

n













Inverting diagonal matrices

Theorem A diagonal matrix D = diag(d1, . . . , dn)
is invertible if and only if all diagonal entries are
nonzero: di 6= 0 for 1 ≤ i ≤ n.

If D is invertible then D−1 = diag(d−1

1
, . . . , d−1

n ).

Proof: If all di 6= 0 then, clearly,

diag(d1, . . . , dn) diag(d−1

1
, . . . , d−1

n ) = diag(1, . . . , 1) = I ,

diag(d−1

1
, . . . , d−1

n ) diag(d1, . . . , dn) = diag(1, . . . , 1) = I .

Now suppose that di = 0 for some i . Then for any
n×n matrix B the ith row of the matrix DB is a
zero row. Hence DB 6= I .



Inverting 2×2 matrices

Definition. The determinant of a 2×2 matrix

A =

(

a b

c d

)

is det A = ad − bc .

Theorem A matrix A =

(

a b

c d

)

is invertible if

and only if det A 6= 0.

If det A 6= 0 then
(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

.



Theorem A matrix A =

(

a b

c d

)

is invertible if

and only if det A 6= 0. If det A 6= 0 then
(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

.

Proof: Let B =

(

d −b

−c a

)

. Then

AB = BA =

(

ad−bc 0
0 ad−bc

)

= (ad − bc)I2.

In the case det A 6= 0, we have A−1 = (det A)−1B .
In the case det A = 0, the matrix A is not invertible as
otherwise AB = O =⇒ A−1(AB) = A−1O = O

=⇒ (A−1A)B = O =⇒ I2B = O =⇒ B = O

=⇒ A = O, but the zero matrix is singular.


