Linear Algebra **Lecture 6:**

Lecture 6: Diagonal matrices. Inverse matrix.

MATH 304

Matrices

Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Notation: $A = (a_{ij})_{1 \le i \le n, 1 \le j \le m}$ or simply $A = (a_{ij})$ if the dimensions are known.

Matrix algebra: linear operations

Addition: two matrices of the same dimensions can be added by adding their corresponding entries.

Scalar multiplication: to multiply a matrix A by a scalar r, one multiplies each entry of A by r.

Zero matrix *O*: all entries are zeros.

Negative: -A is defined as (-1)A.

Subtraction: A - B is defined as A + (-B).

As far as the linear operations are concerned, the $m \times n$ matrices can be regarded as mn-dimensional vectors.

Matrix algebra: matrix multiplication

The product of matrices A and B is defined if the number of columns in A matches the number of rows in B.

Definition. Let $A = (a_{ik})$ be an $m \times n$ matrix and $B = (b_{kj})$ be an $n \times p$ matrix. The **product** AB is defined to be the $m \times p$ matrix $C = (c_{ij})$ such that $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ for all indices i, j.

That is, matrices are multiplied **row by column**.

$$A = \begin{pmatrix} \frac{a_{11} & a_{12} & \dots & a_{1n}}{a_{21} & a_{22} & \dots & a_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \hline a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{pmatrix}$$

$$B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{pmatrix} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_p)$$

$$\Rightarrow AB = \begin{pmatrix} \mathbf{v}_1 \cdot \mathbf{w}_1 & \mathbf{v}_1 \cdot \mathbf{w}_2 & \dots & \mathbf{v}_1 \cdot \mathbf{w}_p \\ \mathbf{v}_2 \cdot \mathbf{w}_1 & \mathbf{v}_2 \cdot \mathbf{w}_2 & \dots & \mathbf{v}_2 \cdot \mathbf{w}_p \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{v}_m \cdot \mathbf{w}_1 & \mathbf{v}_m \cdot \mathbf{w}_2 & \dots & \mathbf{v}_m \cdot \mathbf{w}_p \end{pmatrix}$$

Diagonal matrices

If $A = (a_{ij})$ is a square matrix, then the entries a_{ii} are called **diagonal entries**. A square matrix is called **diagonal** if all non-diagonal entries are zeros.

Example.
$$\begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
, denoted diag $(7, 1, 2)$.

Let
$$A = \operatorname{diag}(s_1, s_2, \dots, s_n)$$
, $B = \operatorname{diag}(t_1, t_2, \dots, t_n)$.
Then $A + B = \operatorname{diag}(s_1 + t_1, s_2 + t_2, \dots, s_n + t_n)$, $rA = \operatorname{diag}(rs_1, rs_2, \dots, rs_n)$.

Example.

$$\begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} -7 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

Theorem Let
$$A = \operatorname{diag}(s_1, s_2, \ldots, s_n)$$
, $B = \operatorname{diag}(t_1, t_2, \ldots, t_n)$.

Then
$$A + B = \operatorname{diag}(s_1 + t_1, s_2 + t_2, \dots, s_n + t_n),$$

 $rA = \operatorname{diag}(rs_1, rs_2, \dots, rs_n).$
 $AB = \operatorname{diag}(s_1t_1, s_2t_2, \dots, s_nt_n).$

In particular, diagonal matrices always commute (i.e., AB = BA).

Example.

$$\begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 7a_{11} & 7a_{12} & 7a_{13} \\ a_{21} & a_{22} & a_{23} \\ 2a_{31} & 2a_{32} & 2a_{33} \end{pmatrix}$$

Theorem Let $D = \operatorname{diag}(d_1, d_2, \dots, d_m)$ and A be an $m \times n$ matrix. Then the matrix DA is obtained from A by multiplying the ith row by d_i for $i = 1, 2, \dots, m$:

$$A = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{pmatrix} \implies DA = \begin{pmatrix} d_1 \mathbf{v}_1 \\ d_2 \mathbf{v}_2 \\ \vdots \\ d_m \mathbf{v}_m \end{pmatrix}$$

Example.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 7a_{11} & a_{12} & 2a_{13} \\ 7a_{21} & a_{22} & 2a_{23} \\ 7a_{31} & a_{32} & 2a_{33} \end{pmatrix}$$

Theorem Let $D = \operatorname{diag}(d_1, d_2, \dots, d_n)$ and A be an $m \times n$ matrix. Then the matrix AD is obtained from A by multiplying the ith column by d_i for $i = 1, 2, \dots, n$:

$$A = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n)$$

$$\implies AD = (d_1\mathbf{w}_1, d_2\mathbf{w}_2, \dots, d_n\mathbf{w}_n)$$

Identity matrix

Definition. The **identity matrix** (or **unit matrix**) is a diagonal matrix with all diagonal entries equal to 1. The $n \times n$ identity matrix is denoted I_n or simply I.

$$I_1=(1), \quad I_2=egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}, \quad I_3=egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}.$$

In general,
$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & 1 \end{pmatrix}$$
.

Theorem. Let A be an arbitrary $m \times n$ matrix. Then $I_m A = AI_n = A$.

Inverse matrix

Let $\mathcal{M}_n(\mathbb{R})$ denote the set of all $n \times n$ matrices with real entries. We can **add**, **subtract**, and **multiply** elements of $\mathcal{M}_n(\mathbb{R})$. What about **division**?

Definition. Let $A \in \mathcal{M}_n(\mathbb{R})$. Suppose there exists an $n \times n$ matrix B such that

$$AB = BA = I_n$$
.

Then the matrix A is called **invertible** and B is called the **inverse** of A (denoted A^{-1}).

A non-invertible square matrix is called **singular**.

$$AA^{-1} = A^{-1}A = I$$

Examples

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$BA = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$C^2 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

 $AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$

Thus $A^{-1} = B$, $B^{-1} = A$, and $C^{-1} = C$.

Inverting diagonal matrices

Theorem A diagonal matrix $D = \operatorname{diag}(d_1, \dots, d_n)$ is invertible if and only if all diagonal entries are nonzero: $d_i \neq 0$ for $1 \leq i \leq n$.

If D is invertible then $D^{-1} = \operatorname{diag}(d_1^{-1}, \dots, d_n^{-1})$.

$$egin{pmatrix} d_1 & 0 & \dots & 0 \ 0 & d_2 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & d_n \end{pmatrix}^{-1} = egin{pmatrix} d_1^{-1} & 0 & \dots & 0 \ 0 & d_2^{-1} & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & d_n^{-1} \end{pmatrix}$$

Inverting diagonal matrices

Theorem A diagonal matrix $D = \operatorname{diag}(d_1, \ldots, d_n)$ is invertible if and only if all diagonal entries are nonzero: $d_i \neq 0$ for $1 \leq i \leq n$.

If D is invertible then $D^{-1} = \operatorname{diag}(d_1^{-1}, \dots, d_n^{-1})$.

Proof: If all $d_i \neq 0$ then, clearly, $\operatorname{diag}(d_1, \ldots, d_n) \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1}) = \operatorname{diag}(1, \ldots, 1) = I$, $\operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1}) \operatorname{diag}(d_1, \ldots, d_n) = \operatorname{diag}(1, \ldots, 1) = I$.

Now suppose that $d_i = 0$ for some i. Then for any $n \times n$ matrix B the ith row of the matrix DB is a zero row. Hence $DB \neq I$.

Inverting 2×2 matrices

Definition. The **determinant** of a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $\det A = ad - bc$.

Theorem A matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if and only if det $A \neq 0$.

If $\det A \neq 0$ then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Theorem A matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if

and only if $\det A \neq 0$. If $\det A \neq 0$ then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Proof: Let $B = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. Then $AB = BA = \begin{pmatrix} ad-bc & 0 \\ 0 & ad-bc \end{pmatrix} = (ad-bc)I_2.$

In the case $\det A \neq 0$, we have $A^{-1} = (\det A)^{-1}B$. In the case $\det A = 0$, the matrix A is not invertible as otherwise $AB = O \implies A^{-1}(AB) = A^{-1}O = O$ $\implies (A^{-1}A)B = O \implies I_2B = O \implies B = O$ $\implies A = O$, but the zero matrix is singular.