MATH 304
Linear Algebra

Lecture 12:
Subspaces of vector spaces.



Vector space

A vector space is a set V equipped with two
operations, addition

VxV3(xy)—x+yeV
and scalar multiplication
RxV>3(r,x)—rxeV,

that have the following properties:



Properties of addition and scalar multiplication

Al. a+b=b+a foralla,be V.
A2. (a+b)+c=a+(b+c) foralla,b,ce V.

A3. There exists an element of V/, called the zero
vector and denoted 0, such that a+0=0+a=a
forallac V.

A4. For any a € V there exists an element of V/,
denoted —a, such that a+ (—a) =(—a)+a=0.
A5. r(a+b)=ra+rb forallr€ Randa,bec V.
A6. (r+s)a=ra+sa forallr,scRandac V.
A7. (rs)a=r(sa) forallr,sceRandac V.

A8. la=a forallae V.
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e Associativity of addition implies that a multiple
sum uj +up + - - - + ug is well defined for any
up,Up,...,ug € V.

e Subtraction in V is defined as usual:
a—b=a+(-b).

e Addition and scalar multiplication are called
linear operations.

Given uq,up,...,us € Vand r,n, ..., re € R,

[ru1 + nuy + -+ rug

is called a linear combination of uy, u,, ..., uy.



Additional properties of vector spaces

e The zero vector is unique.

e For any a € V, the negative —a is unique.

e at+tb=c<= a=c—b forallab,ceV.
e atc=b+c<= a=>b foralla,b,ce V.

e 0a=0 forany ae V.
e (—1)a=—a forany ac V.



Examples of vector spaces

e R" n-dimensional coordinate vectors

o M n(R): mxn matrices with real entries
e R™: infinite sequences (x1,x,...), x; € R
e {0}: the trivial vector space

e F(R): the set of all functions f: R — R

e C(R): all continuous functions f : R — R

e C(R): all continuously differentiable functions
f-R—R

e C*(R): all smooth functions f: R — R
e P: all polynomials p(x) = ap+ a;x + -+ + a,x"



Subspaces of vector spaces

Definition. A vector space V| is a subspace of a
vector space V if Vy C V' and the linear operations
on V{ agree with the linear operations on V.

Examples.
e F(R): all functions f: R — R

e C(R): all continuous functions f : R — R
C(R) is a subspace of F(R).

e P: polynomials p(x) = ap+ arx + - -+ + axx*

e P,: polynomials of degree less than n

P, is a subspace of P.



Subspaces of vector spaces

Counterexamples.

e R": n-dimensional coordinate vectors

e (" vectors with rational coordinates

Q" is not a subspace of R".

V2(1,1,...,1) ¢ Q" = Q" is not a vector space
(scaling is not well defined).

e P: polynomials p(x) = ag + aix + -+ - + a,x"
e P polynomials of degree n (n > 0)

P* is not a subspace of P.

n

—x"4+ (x"+1)=1¢ P: = P} is not a vector space
(addition is not well defined).



If S is a subset of a vector space V then S inherits
from V addition and scalar multiplication. However
S need not be closed under these operations.

Proposition A subset S of a vector space V' is a
subspace of V if and only if S is nonempty and
closed under linear operations, i.e.,

x,yeS — x+yes,
xeS — rxeS§ forall reR.

Proof:  “only if" is obvious.

“if"": properties like associative, commutative, or distributive
law hold for S because they hold for V. We only need to
verify properties A3 and A4. Take any x € S (note that S is
nonempty). Then 0 =0x € S. Also, —x = (—1)x € S.



Example. V =R2.

e Theline x —y =0 is a subspace of R?.

The line consists of all vectors of the form (t,t), t € R.

(t,t)+ (s,s) = (t+s,t +s) = closed under addition
r(t,t) = (rt,rt) = closed under scaling
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e The parabola y = x? is not a subspace of R?.

It is enough to find one explicit counterexample.
Counterexample 1: (1,1) + (—1,1) = (0, 2).

(1,1) and (—1,1) lie on the parabola while (0,2) does not
= not closed under addition

Counterexample 2: 2(1,1) = (2, 2).

(1,1) lies on the parabola while (2,2) does not

= not closed under scaling



Example. V =R3,

e The plane z =0 is a subspace of R3.

e The plane z =1 is not a subspace of R3.

e Theline t(1,1,0), t € R is a subspace of R3
and a subspace of the plane z = 0.

e Theline (1,1,1)+t(1,—1,0), t € R is not a
subspace of R? as it lies in the plane x +y +z = 3,
which does not contain 0.

e In general, a straight line or a plane in R? is a
subspace if and only if it passes through the origin.



System of linear equations:

anxy + apxo + -+ -+ aipXxpy = by
aniXy + axXo + -+ agXp = by

Am1X1 + ameX2 + -+ ampXp = bm
Any solution (x1,x,...,x,) is an element of R".

Theorem The solution set of the system is a
subspace of R” if and only if all b; = 0.



Theorem The solution set of a system of linear
equations in n variables is a subspace of R” if and
only if all equations are homogeneous.

Proof: “only if": the zero vector 0 = (0,0,...,0) is a
solution only if all equations are homogeneous.

“if": a system of homogeneous linear equations is equivalent
to a matrix equation Ax = 0.

A0 =0 = 0 is a solution = solution set is not empty.
If Ax=0 and Ay =0 then A(x+y)=Ax+ Ay =0.
If Ax =0 then A(rx) = r(Ax)=0.



Examples of subspaces of Mjy,(R): A= <j_ 3)

e diagonal matrices: b=c=0

e upper triangular matrices: ¢ =20

e lower triangular matrices: b =10

e symmetric matrices (AT = A): b=c

e anti-symmetric (or skew-symmetric) matrices
(AT =—A): a=d=0, c=—b

e matrices with zero trace: a+d =20

(trace = the sum of diagonal entries)

e matrices with zero determinant, ad — bc = 0,

do ot f beoace: (L O) L (CO)_ (10O
O NOt Torm a subspace: 0 0 01 = 01)



