MATH 304
Linear Algebra

Lecture 20:
Change of coordinates (continued).
Linear transformations.



Basis and coordinates

If {vi,vo,...,v,} is a basis for a vector space V,
then any vector v € V' has a unique representation

V = X1V1 + XoVo + - -+ 4+ XV,

where x; € R. The coefficients xq,x,...,x, are
called the coordinates of v with respect to the
ordered basis vi,vy, ..., v,.
The mapping

vector v +— its coordinates (xi,xo, ..., Xp)

is a one-to-one correspondence between V and R”".
This correspondence respects linear operations in V
and in R".



Examples. e Coordinates of a vector

v =(x1,X,...,%,) € R" relative to the standard
basis e; = (1,0,...,0,0), e, =(0,1,...,0,0),...,
e, =(0,0,...,0,1) are (x1,x0,...,Xn)

e Coordinates of a matrix (i 3)6 Mo (R)

. . 10 0 1 00
relative to the basis (0 0), <0 0), <1 O)’

00
(0 1) are (a, b, c,d).

e Coordinates of a polynomial

- 2 -1
the basis 1,x,x%,...,x" " are (ag,a1,...,an_1)



Change of coordinates: general case

Let V be a vector space of dimension n.
Let vq,vy,...,v, bea basis for V and g : V — R” be the
coordinate mapping corresponding to this basis.

Let ug,uy,...,u, be another basis for V and g : V — R”
be the coordinate mapping corresponding to this basis.
V
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R” — R”

The composition gyog; * is a transformation of R".
It has the form x — Ux, where U is an nxn matrix.

U is called the transition matrix from v;,v,...,v, to

up,Us...,u, Columns of U are coordinates of the vectors
Vi,Vo,...,V, with respect to the basis ui,uy,..., u,.



Problem. Find the transition matrix from the
basis pi(x) =1, pa(x) = x + 1, ps(x) = (x + 1)
to the basis qi1(x) = 1, qa(x) = x, g3(x) = x? for
the vector space Ps.

We have to find coordinates of the polynomials

p1, P2, p3 with respect to the basis g1, g, gs:

pi(x) = 1= qi(x),

pa(x) = x + 1 = qi(x) + q2(x),

p3(x) = (x+1)? = x®>+2x+1 = q1(x)+2q2(x)+q3(x).

O~
_ N =

1
Hence the transition matrix is 0
0



Thus the polynomial identity
a1+ a(x + 1) + a3(x + 1)? = by + box + b3x?

is equivalent to the relation

by 111 ai
b2 = 012 an
b3 001 as



Problem. Find the transition matrix from the
basis vi =(1,2,3), vo = (1,0,1), v3 = (1,2,1) to
the basis u; = (1,1,0), u; = (0,1,1), us = (1,1, 1).

It is convenient to make a two-step transition:
first from vq,v,,v3 to eq,e;, es3, and then from
e, e, ez to ug, uy, us.

Let U; be the transition matrix from vq,v,, vz to
ei, e, e3 and U, be the transition matrix from
u;, Uy, u3z to e, ey, es:

111 1 01
311 011



Basis vi,vy,v3 = coordinates x
Basis e, e;,e3 = coordinates U;x
Basis uy, Uy, u3 = coordinates U, '(Uix)= (U, Us)x

Thus the transition matrix from vy, vy, v3 to
Ug, Up, U3 is U2_1U1.
~1

101 111
UytUp=|111 2 02
011 311
0 1 -1\ /111 -1 -11
=|-1 1 off202]=]1-11
1 -1 1/ \311 2 20



Linear mapping = linear transformation = linear function

Definition. Given vector spaces Vi and V>, a
mapping L: Vi, — V, is linear if

L(x +y) = L(x) + L(y),
L(rx) = rL(x)
for any x,y € V; and r € R.

A linear mapping ¢ : V — R is called a linear
functional on V.

If Vi =V, (orif both Vi and V; are functional
spaces) then a linear mapping L : V4 — V, is called
a linear operator.



Linear mapping = linear transformation = linear function

Definition. Given vector spaces Vi and V>, a
mapping L : Vi — V, is linear if

L(x +y) = L(x) + L(y),
L(rx) = rL(x)
for any x,y € V4 and r € R.

Remark. A function f : R — R given by
f(x) = ax + b is a linear transformation of the
vector space R if and only if b= 0.



Properties of linear mappings
Let L: V7 — V, be a linear mapping.

o L(nvi+ -+ nvk)=nl(vy)+ -+ rnl(vg)
forall k>1,vy,...,vpe € Vy,and ry,....r, € R.
L(rlvl + r2v2) = L(rlvl) + L(r2v2) = I’lL(Vl) + r2L(v2),

L(rvi + nvs + r3vs) = L(nvy + nva) + L(rsvs) =
= rL(vi) + rnL(vz) + rsL(v3), and so on.

e [(0;) =0, where 0; and 0, are zero vectors in
Vi and V,, respectively.

L(0,) = L(00;) = OL(0,) = 0.
o [(—v)=—L(v) forany v e V.
L(=v) = L((=1)v) = (=1)L(v) = —L(v).



Examples of linear mappings

e Scaling L:V — V, L(v) = sv, where s € R.
L(x+y) = s(x+y) = sx+ sy = L(x) + L(y),

L(rx) = s(rx) = r(sx) = rL(x).

e Dot product with a fixed vector

(:R" =R, ¢(v) =v-vy, where vo € R".
l(x+y)=(x+y) vo=x-vo+y vo={(x)+{(y),
U(rx) = (rx) - vo = r(x - vg) = rf(x).

e (ross product with a fixed vector

L:R3— R3 L(v)=v X vg, where vy € R3.

e Multiplication by a fixed matrix
L:R"— R™ L(v) = Av, where Ais an mxn
matrix and all vectors are column vectors.



Linear mappings of functional vector spaces

e FEvaluation at a fixed point
(: F(R) — R, ¢(f)=f(a), where a € R.

e Multiplication by a fixed function
L: F(R)— F(R), L(f)=gf, where g € F(R).

e Differentiation D : C}(R) — C(R), L(f)=f".
D(f +g)=(f +g) =f"+g =D(f) + D(g),
D(rf) = (rf) = rf’ = rD(f).

e Integration over a finite interval

b
(:C(R) =R, £(f) :/ f(x) dx, where
abcR, a<b. ’



Properties of linear mappings

e If a linear mapping L: V — W is invertible then
the inverse mapping L= : W — V is also linear.

o If L:V —=W and M: W — X are linear
mappings then the composition Mo L:V — X is
also linear.

o If L1:V—W and Ly, : V — W are linear
mappings then the sum L; + L, is also linear.



Linear differential operators

e an ordinary differential operator
2 d

— +t&—— + &,

where gy, g1, & are smooth functions on R.

Thatis, L(f) = gof” + g1f’ + &f.

L:C®(R) — C*(R), L=g

e Laplace’s operator A : C*(R?) — C*(RR?),
0’f  O°*f

= + oy

(a.k.a. the Laplacian; also denoted by Vz).

Af



Mmn(R): the space of mxn matrices.

o a: Mpy,(R) — M,n(R), a(A)=AT.

a(A+B)=a(A)+a(B) < (A+B)T =AT + BT.
a(rA) = ra(A) <= (rA)T = rAT.
Hence « is linear.

o B: Mso(R) =R, B(A)= detA.

10 00
o a- (3 ) n- (09

Then A—l—B_( (1))

We have det(A et(B) = 0 while det(A+ B) = 1.
Hence [(A+ B) ( )+ B(B) so that 3 is not linear.



