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Linear Algebra

Lecture 22:
Matrix of a linear transformation.

Similar matrices.



Linear transformation

Definition. Given vector spaces V1 and V2, a
mapping L : V1 → V2 is linear if

L(x + y) = L(x) + L(y),

L(rx) = rL(x)

for any x, y ∈ V1 and r ∈ R.



Matrix transformations

Theorem Suppose L : R
n → R

m is a linear map. Then
there exists an m×n matrix A such that L(x) = Ax for all
x ∈ R

n. Columns of A are vectors L(e1), L(e2), . . . , L(en),
where e1, e2, . . . , en is the standard basis for R

n.

y = Ax ⇐⇒
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
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y2

...
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a11 a12 . . . a1n
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am1 am2 . . . amn
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⇐⇒
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= x1
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+ x2
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+ · · · + xn
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



Basis and coordinates

If {v1, v2, . . . , vn} is a basis for a vector space V ,
then any vector v ∈ V has a unique representation

v = x1v1 + x2v2 + · · · + xnvn,

where xi ∈ R. The coefficients x1, x2, . . . , xn are
called the coordinates of v with respect to the
ordered basis v1, v2, . . . , vn.

The mapping

vector v 7→ its coordinates (x1, x2, . . . , xn)

provides a one-to-one correspondence between V

and R
n. Besides, this mapping is linear.



Change of coordinates (revisited)

Let V be a vector space.
Let v1, v2, . . . , vn be a basis for V and g1 : V → R

n be the
coordinate mapping corresponding to this basis.

Let u1,u2, . . . ,un be another basis for V and g2 : V → R
n

be the coordinate mapping corresponding to this basis.

V
g1

ւ
g2

ց

R
n −→ R

n

The composition g2◦g
−1

1
is a linear mapping of R

n to itself.
It is represented as x 7→ Ux, where U is an n×n matrix.

U is called the transition matrix from v1, v2 . . . , vn to
u1,u2 . . . ,un. Columns of U are coordinates of the vectors
v1, v2, . . . , vn with respect to the basis u1,u2, . . . ,un.



Matrix of a linear transformation

Let V , W be vector spaces and f : V → W be a linear map.
Let v1, v2, . . . , vn be a basis for V and g1 : V → R

n be the
coordinate mapping corresponding to this basis.

Let w1,w2, . . . ,wm be a basis for W and g2 : W → R
m

be the coordinate mapping corresponding to this basis.

V
f

−→ W

g1





y





y
g2

R
n −→ R

m

The composition g2◦f ◦g
−1

1
is a linear mapping of R

n to R
m.

It is represented as x 7→ Ax, where A is an m×n matrix.

A is called the matrix of f with respect to bases v1, . . . , vn

and w1, . . . ,wm. Columns of A are coordinates of vectors
f (v1), . . . , f (vn) with respect to the basis w1, . . . ,wm.



Examples. • D : P3 → P2, (Dp)(x) = p′(x).

Let AD be the matrix of D with respect to the bases
1, x , x2 and 1, x . Columns of AD are coordinates
of polynomials D1, Dx , Dx2 w.r.t. the basis 1, x .

D1 = 0, Dx = 1, Dx2 = 2x =⇒ AD =

(

0 1 0
0 0 2

)

• L : P3 → P3, (Lp)(x) = p(x + 1).

Let AL be the matrix of L w.r.t. the basis 1, x , x2.
L1 = 1, Lx = 1 + x , Lx2 = (x + 1)2 = 1 + 2x + x2.

=⇒ AL =





1 1 1
0 1 2
0 0 1







Problem. Consider a linear operator L on the
vector space of 2×2 matrices given by

L

(

x y

z w

)

=

(

1 2
3 4

) (

x y

z w

)

.

Find the matrix of L with respect to the basis

E1 =

(

1 0
0 0

)

, E2 =

(

0 1
0 0

)

, E3 =

(

0 0
1 0

)

, E4 =

(

0 0
0 1

)

.

Let ML denote the desired matrix.

It follows from the definition that ML is a 4×4 matrix whose
columns are coordinates of the matrices

L(E1), L(E2), L(E3), L(E4)

with respect to the basis E1, E2, E3, E4.



L(E1) =

(

1 2
3 4

) (

1 0
0 0

)

=

(

1 0
3 0

)

= 1E1+0E2+3E3+0E4,

L(E2) =

(

1 2
3 4

) (

0 1
0 0

)

=

(

0 1
0 3

)

= 0E1+1E2+0E3+3E4,

L(E3) =

(

1 2
3 4

) (

0 0
1 0

)

=

(

2 0
4 0

)

= 2E1+0E2+4E3+0E4,

L(E4) =

(

1 2
3 4

) (

0 0
0 1

)

=

(

0 2
0 4

)

= 0E1+2E2+0E3+4E4.

Therefore

ML =









1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4









.



Thus the relation
(

x1 y1

z1 w1

)

=

(

1 2
3 4

) (

x y

z w

)

is equivalent to the relation








x1

y1

z1

w1









=









1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4

















x

y

z

w









.



Problem. Consider a linear operator L : R
2 → R

2,

L

(

x

y

)

=

(

1 1
0 1

) (

x

y

)

.

Find the matrix of L with respect to the basis
v1 = (3, 1), v2 = (2, 1).

Let N be the desired matrix. Columns of N are coordinates of
the vectors L(v1) and L(v2) w.r.t. the basis v1, v2.

L(v1) =

(

1 1
0 1

)(

3
1

)

=

(

4
1

)

, L(v2) =

(

1 1
0 1

)(

2
1

)

=

(

3
1

)

.

Clearly, L(v2) = v1 = 1v1 + 0v2.

L(v1) = αv1 + βv2 ⇐⇒

{

3α + 2β = 4
α + β = 1

⇐⇒

{

α = 2
β = −1

Thus N =

(

2 1
−1 0

)

.



Change of basis for a linear operator

Let L : V → V be a linear operator on a vector space V .

Let A be the matrix of L relative to a basis a1, a2, . . . , an

for V . Let B be the matrix of L relative to another basis
b1,b2, . . . ,bn for V .

Let U be the transition matrix from the basis a1, a2, . . . , an

to b1,b2, . . . ,bn.

a-coordinates of v
A

−→ a-coordinates of L(v)

U




y





y
U

b-coordinates of v
B

−→ b-coordinates of L(v)

It follows that UAx = BUx for all x ∈ R
n =⇒ UA = BU .

Then A = U−1BU and B = UAU−1.



Problem. Consider a linear operator L : R
2 → R

2,

L

(

x

y

)

=

(

1 1
0 1

) (

x

y

)

.

Find the matrix of L with respect to the basis
v1 = (3, 1), v2 = (2, 1).

Let S be the matrix of L with respect to the standard basis,
N be the matrix of L with respect to the basis v1, v2, and U be
the transition matrix from v1, v2 to e1, e2. Then N = U−1SU .

S =

(

1 1
0 1

)

, U =

(

3 2
1 1

)

,

N = U−1SU =

(

1 −2
−1 3

) (

1 1
0 1

) (

3 2
1 1

)

=

(

1 −1
−1 2

) (

3 2
1 1

)

=

(

2 1
−1 0

)

.



Similarity

Definition. An n×n matrix B is said to be similar

to an n×n matrix A if B = S−1AS for some
nonsingular n×n matrix S .

Remark. Two n×n matrices are similar if and only
if they represent the same linear operator on R

n

with respect to different bases.

Theorem Similarity is an equivalence relation,
which means that
(i) any square matrix A is similar to itself;
(ii) if B is similar to A, then A is similar to B ;
(iii) if A is similar to B and B is similar to C , then

A is similar to C .



Theorem Similarity is an equivalence relation, i.e.,
(i) any square matrix A is similar to itself;
(ii) if B is similar to A, then A is similar to B ;
(iii) if A is similar to B and B is similar to C , then

A is similar to C .

Proof: (i) A = I−1AI .

(ii) If B = S−1AS then A = SBS−1 = (S−1)−1BS−1

= S−1

1
BS1, where S1 = S−1.

(iii) If A = S−1BS and B = T−1CT then
A = S−1(T−1CT )S = (S−1T−1)C (TS) = (TS)−1C (TS)
= S−1

2
CS2, where S2 = TS .

Theorem If A and B are similar matrices then they
have the same (i) determinant, (ii) trace = the
sum of diagonal entries, (iii) rank, and (iv) nullity.


