MATH 304 Lecture 27: Linear Algebra Inner product spaces. Orthogonal sets. #### Norm The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n . *Definition.* Let V be a vector space. A function $\alpha:V\to\mathbb{R}$ is called a **norm** on V if it has the following properties: (i) $$\alpha(\mathbf{x}) \geq 0$$, $\alpha(\mathbf{x}) = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\alpha(r\mathbf{x}) = |r| \alpha(\mathbf{x})$ for all $r \in \mathbb{R}$ (homogeneity) (iii) $\alpha(\mathbf{x} + \mathbf{y}) \leq \alpha(\mathbf{x}) + \alpha(\mathbf{y})$ (triangle inequality) Notation. The norm of a vector $\mathbf{x} \in V$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_2$. Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. • $$\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|).$$ • $$\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}, \ p \ge 1.$$ Examples. $V = C[a, b], f : [a, b] \rightarrow \mathbb{R}.$ $$\bullet \|f\|_{\infty} = \max |f(x)|$$ $$\bullet \quad \|f\|_{\infty} = \max_{a \le x \le b} |f(x)|.$$ • $$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p \ge 1.$$ #### Normed vector space Definition. A **normed vector space** is a vector space endowed with a norm. The norm defines a distance function on the normed vector space: $\operatorname{dist}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$. Then we say that a sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ converges to a vector \mathbf{x} if $\operatorname{dist}(\mathbf{x}, \mathbf{x}_n) \to 0$ as $n \to \infty$. Also, we say that a vector \mathbf{x} is a good approximation of a vector \mathbf{x}_0 if $\operatorname{dist}(\mathbf{x}, \mathbf{x}_0)$ is small. # Inner product The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^n . Definition. Let V be a vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, is called an **inner product** on V if it is positive, symmetric, and bilinear. That is, if (i) $\langle \mathbf{x}, \mathbf{x} \rangle > 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (symmetry) (iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity) (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (distributive law) An **inner product space** is a vector space endowed with an inner product. Examples. $V = \mathbb{R}^n$. $$\bullet \ \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n.$$ • $$\langle \mathbf{x}, \mathbf{y} \rangle = d_1 x_1 y_1 + d_2 x_2 y_2 + \cdots + d_n x_n y_n$$, where $d_1, d_2, \ldots, d_n > 0$. • $\langle \mathbf{x}, \mathbf{y} \rangle = (D\mathbf{x}) \cdot (D\mathbf{y})$, where D is an invertible $n \times n$ matrix. Example. $V = \mathcal{M}_{m,n}(\mathbb{R})$, space of $m \times n$ matrices. • $$\langle A, B \rangle = \operatorname{trace}(AB^T)$$. If $A = (a_{ij})$ and $B = (b_{ij})$, then $\langle A, B \rangle = \sum_{i=1}^m \sum_{j=1}^n a_{ij} b_{ij}$. Examples. V = C[a, b]. • $$\langle f,g\rangle = \int_a^b f(x)g(x) dx$$. • $\langle f,g\rangle = \int^b f(x)g(x)w(x) dx$, where w is bounded, piecewise continuous, and w > 0 everywhere on [a, b]. w is called the **weight** function. **Theorem** Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then $$\langle \mathbf{x}, \mathbf{y} \rangle^2 \le \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$$ for all $\mathbf{x}, \mathbf{y} \in V$. Proof: For any $t \in \mathbb{R}$ let $\mathbf{v}_t = \mathbf{x} + t\mathbf{y}$. Then $\langle \mathbf{v}_t, \mathbf{v}_t \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + 2t \langle \mathbf{x}, \mathbf{y} \rangle + t^2 \langle \mathbf{y}, \mathbf{y} \rangle$. The right-hand side is a quadratic polynomial in t (provided that $\mathbf{y} \neq \mathbf{0}$). Since $\langle \mathbf{v}_t, \mathbf{v}_t \rangle \geq 0$ for all t, the discriminant D is nonpositive. But $D = 4\langle \mathbf{x}, \mathbf{y} \rangle^2 - 4\langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$. #### Cauchy-Schwarz Inequality: $$|\langle \mathbf{x}, \mathbf{y} angle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x} angle} \, \sqrt{\langle \mathbf{y}, \mathbf{y} angle}.$$ # **Cauchy-Schwarz Inequality:** $$|\langle \mathbf{x}, \mathbf{y} angle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x} angle} \sqrt{\langle \mathbf{y}, \mathbf{y} angle}.$$ Corollary 1 $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Equivalently, for all $x_i, y_i \in \mathbb{R}$, $$(x_1y_1+\cdots+x_ny_n)^2 \leq (x_1^2+\cdots+x_n^2)(y_1^2+\cdots+y_n^2).$$ Corollary 2 For any $f, g \in C[a, b]$, $$\left(\int_a^b f(x)g(x)\,dx\right)^2 \leq \int_a^b |f(x)|^2\,dx\cdot\int_a^b |g(x)|^2\,dx.$$ ### Norms induced by inner products **Theorem** Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ is a norm. *Proof:* Positivity is obvious. Homogeneity: $$||r\mathbf{x}|| = \sqrt{\langle r\mathbf{x}, r\mathbf{x} \rangle} = \sqrt{r^2 \langle \mathbf{x}, \mathbf{x} \rangle} = |r| \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$ Triangle inequality (follows from Cauchy-Schwarz's): $$||\mathbf{x} + \mathbf{y}||^{2} = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$ $$= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$ $$\leq \langle \mathbf{x}, \mathbf{x} \rangle + |\langle \mathbf{x}, \mathbf{y} \rangle| + |\langle \mathbf{y}, \mathbf{x} \rangle| + \langle \mathbf{y}, \mathbf{y} \rangle$$ $$< ||\mathbf{x}||^{2} + 2||\mathbf{x}|| ||\mathbf{y}|| + ||\mathbf{y}||^{2} = (||\mathbf{x}|| + ||\mathbf{y}||)^{2}.$$ Examples. • The length of a vector in \mathbb{R}^n , $|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$, is the norm induced by the dot product $$\mathbf{x} \cdot \mathbf{v} = x_1 v_1 + x_2 v_2 + \cdots + x_n v_n.$$ • The norm $||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$ on the vector space C[a,b] is induced by the inner product $\langle f,g\rangle = \int_a^b f(x)g(x)\,dx.$ # **Angle** Since $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| \, ||\mathbf{y}||$, we can define the *angle* between nonzero vectors in any vector space with an inner product (and induced norm): $$\angle(\mathbf{x}, \mathbf{y}) = \arccos \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$ Then $\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \angle (\mathbf{x}, \mathbf{y})$. In particular, vectors \mathbf{x} and \mathbf{y} are **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. #### Pythagorean Law: $$\mathbf{x} \perp \mathbf{y} \implies \|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$ Proof: $$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$ $= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$ $= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2.$ #### Parallelogram Identity: $$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$$ Proof: $$\|\mathbf{x}+\mathbf{y}\|^2 = \langle \mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle.$$ Similarly, $\|\mathbf{x}-\mathbf{y}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle.$ Then $\|\mathbf{x}+\mathbf{y}\|^2 + \|\mathbf{x}-\mathbf{y}\|^2 = 2\langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{y}, \mathbf{y} \rangle = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2.$ # **Orthogonal sets** Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$. Definition. A nonempty set $S \subset V$ of nonzero vectors is called an **orthogonal set** if all vectors in S are mutually orthogonal. That is, $\mathbf{0} \notin S$ and $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for any $\mathbf{x}, \mathbf{y} \in S$, $\mathbf{x} \neq \mathbf{y}$. An orthogonal set $S \subset V$ is called **orthonormal** if $\|\mathbf{x}\| = 1$ for any $\mathbf{x} \in S$. Remark. Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ form an orthonormal set if and only if $$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$ Examples. \bullet $V = \mathbb{R}^n$, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$. The standard basis $\mathbf{e}_1 = (1, 0, 0, \dots, 0)$, The standard basis $\mathbf{e}_1 = (1, 0, 0, \dots, 0),$ $\mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \mathbf{e}_n = (0, 0, 0, \dots, 1).$ • $$V = \mathbb{R}^3$$, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$. It is an orthonormal set. $$\mathbf{v}_1 = (3, 5, 4), \ \mathbf{v}_2 = (3, -5, 4), \ \mathbf{v}_3 = (4, 0, -3).$$ $$\begin{aligned} &\textbf{v}_1 \cdot \textbf{v}_2 = 0, & \textbf{v}_1 \cdot \textbf{v}_3 = 0, & \textbf{v}_2 \cdot \textbf{v}_3 = 0, \\ &\textbf{v}_1 \cdot \textbf{v}_1 = 50, & \textbf{v}_2 \cdot \textbf{v}_2 = 50, & \textbf{v}_3 \cdot \textbf{v}_3 = 25. \end{aligned}$$ Thus the set $\{\textbf{v}_1, \textbf{v}_2, \textbf{v}_3\}$ is orthogonal but not Thus the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is orthogonal but not orthonormal. An orthonormal set is formed by normalized vectors $\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$, $\mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$, $\mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_2\|}$. • $$V = C[-\pi, \pi], \langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx.$$ $f_1(x) = \sin x$, $f_2(x) = \sin 2x$, ..., $f_n(x) = \sin nx$, ... $$\langle f_m, f_n \rangle = \int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \begin{cases} \pi & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$ Thus the set $\{f_1, f_2, f_3, \dots\}$ is orthogonal but not orthonormal. It is orthonormal with respect to a scaled inner product $$\langle\!\langle f,g \rangle\!\rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) dx.$$ # ${\bf Orthogonality} \implies {\bf linear \ independence}$ **Theorem** Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are nonzero vectors that form an orthogonal set. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent. *Proof:* Suppose $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \cdots + t_k\mathbf{v}_k = \mathbf{0}$ for some $t_1, t_2, \dots, t_k \in \mathbb{R}$. Then for any index $1 \le i \le k$ we have $$\langle t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + \cdots + t_k \mathbf{v}_k, \mathbf{v}_i \rangle = \langle \mathbf{0}, \mathbf{v}_i \rangle = 0.$$ $$\implies t_1 \langle \mathbf{v}_1, \mathbf{v}_i \rangle + t_2 \langle \mathbf{v}_2, \mathbf{v}_i \rangle + \cdots + t_k \langle \mathbf{v}_k, \mathbf{v}_i \rangle = 0$$ By orthogonality, $t_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle = 0 \implies t_i = 0$.