MATH 304

Linear Algebra

Lecture 29: The Gram-Schmidt process (continued).

Orthogonal projection

Orthogonal projection

Theorem Let V be an inner product space and V_0 be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V_0$ and $\mathbf{o} \perp V_0$.

The component \mathbf{p} is the **orthogonal projection** of the vector \mathbf{x} onto the subspace V_0 . The distance from \mathbf{x} to the subspace V_0 is $\|\mathbf{o}\|$.

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V_0 then

$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n.$$

The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V. Let

$$\mathbf{v}_1 = \mathbf{x}_1$$
,

$$\mathbf{v}_2 = \mathbf{x}_2 - rac{\langle \mathbf{x}_2, \mathbf{v}_1
angle}{\langle \mathbf{v}_1, \mathbf{v}_1
angle} \mathbf{v}_1$$
 ,

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2,$$

$$\mathbf{v}_n = \mathbf{x}_n - \frac{\langle \mathbf{x}_n, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \cdots - \frac{\langle \mathbf{x}_n, \mathbf{v}_{n-1} \rangle}{\langle \mathbf{v}_{n-1}, \mathbf{v}_{n-1} \rangle} \mathbf{v}_{n-1}.$$

Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V.

Any basis $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ Orthogonal basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$

Properties of the Gram-Schmidt process:

- $\mathbf{v}_k = \mathbf{x}_k (\alpha_1 \mathbf{x}_1 + \dots + \alpha_{k-1} \mathbf{x}_{k-1}), \ 1 \le k \le n;$
- the span of $\mathbf{v}_1, \dots, \mathbf{v}_k$ is the same as the span of $\mathbf{x}_1, \dots, \mathbf{x}_k$;
 - \mathbf{v}_k is orthogonal to $\mathbf{x}_1, \dots, \mathbf{x}_{k-1}$;
- $\mathbf{v}_k = \mathbf{x}_k \mathbf{p}_k$, where \mathbf{p}_k is the orthogonal projection of the vector \mathbf{x}_k on the subspace spanned by $\mathbf{x}_1, \dots, \mathbf{x}_{k-1}$;
- $\|\mathbf{v}_k\|$ is the distance from \mathbf{x}_k to the subspace spanned by $\mathbf{x}_1, \dots, \mathbf{x}_{k-1}$.

Problem. Find the distance from the point $\mathbf{y}=(0,0,0,1)$ to the subspace $V\subset\mathbb{R}^4$ spanned

by vectors $\mathbf{x}_1=(1,-1,1,-1)$, $\mathbf{x}_2=(1,1,3,-1)$, and $\mathbf{x}_3=(-3,7,1,3)$. Let us apply the Gram-Schmidt process to vectors

Let us apply the Gram-Schmidt process to vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{y}$. We should obtain an orthogonal system $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. The desired distance will be $|\mathbf{v}_4|$.

$$\mathbf{x}_{1} = (1, -1, 1, -1), \ \mathbf{x}_{2} = (1, 1, 3, -1),$$

$$\mathbf{x}_{3} = (-3, 7, 1, 3), \ \mathbf{y} = (0, 0, 0, 1).$$

$$\mathbf{v}_{1} = \mathbf{x}_{1} = (1, -1, 1, -1),$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\langle \mathbf{x}_{2}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} = (1, 1, 3, -1) - \frac{4}{4}(1, -1, 1, -1)$$

$$= (0, 2, 2, 0),$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{2} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{1}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{1}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2}$$

$$= (-3, 7, 1, 3) - \frac{-12}{4} (1, -1, 1, -1) - \frac{16}{8} (0, 2, 2, 0)$$

$$= (0, 0, 0, 0).$$

The Gram-Schmidt process can be used to check linear independence of vectors!

The vector \mathbf{x}_3 is a linear combination of \mathbf{x}_1 and \mathbf{x}_2 .

V is a plane, not a 3-dimensional subspace.

We should orthogonalize vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}$.

$$\tilde{\mathbf{v}}_{3} = \mathbf{y} - \frac{\langle \mathbf{y}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{\langle \mathbf{y}, \mathbf{v}_{2} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2}
= (0, 0, 0, 1) - \frac{-1}{4} (1, -1, 1, -1) - \frac{0}{8} (0, 2, 2, 0)
= (1/4, -1/4, 1/4, 3/4).$$

$$|\tilde{\boldsymbol{v}}_3| = \left| \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right) \right| = \frac{1}{4} \left| (1, -1, 1, 3) \right| = \frac{\sqrt{12}}{4} = \frac{\sqrt{3}}{2}.$$

Problem. Find the distance from the point $\mathbf{z} = (0,0,1,0)$ to the plane Π that passes through the point $\mathbf{x}_0 = (1,0,0,0)$ and is parallel to the vectors $\mathbf{v}_1 = (1,-1,1,-1)$ and $\mathbf{v}_2 = (0,2,2,0)$.

The plane Π is not a subspace of \mathbb{R}^4 as it does not pass through the origin. Let $\Pi_0 = \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2)$. Then $\Pi = \Pi_0 + \mathbf{x}_0$.

Hence the distance from the point \mathbf{z} to the plane Π is the same as the distance from the point $\mathbf{z} - \mathbf{x}_0$ to the plane Π_0 .

We shall apply the Gram-Schmidt process to vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{z} - \mathbf{x}_0$. This will yield an orthogonal system $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$. The desired distance will be $|\mathbf{w}_3|$.

$$\overline{\mathbf{w}_1 = \mathbf{v}_1 = (1, -1, 1, -1)}$$
,

 $\mathbf{v}_1 = (1, -1, 1, -1), \ \mathbf{v}_2 = (0, 2, 2, 0), \ \mathbf{z} - \mathbf{x}_0 = (-1, 0, 1, 0).$

 $\mathbf{w}_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 = \mathbf{v}_2 = (0, 2, 2, 0)$ as $\mathbf{v}_2 \perp \mathbf{v}_1$.

$$\mathbf{w}_{3} = (\mathbf{z} - \mathbf{x}_{0}) - \frac{\langle \mathbf{z} - \mathbf{x}_{0}, \mathbf{w}_{1} \rangle}{\langle \mathbf{w}_{1}, \mathbf{w}_{1} \rangle} \mathbf{w}_{1} - \frac{\langle \mathbf{z} - \mathbf{x}_{0}, \mathbf{w}_{2} \rangle}{\langle \mathbf{w}_{2}, \mathbf{w}_{2} \rangle} \mathbf{w}_{2}$$

$$= (-1, 0, 1, 0) - \frac{0}{4} (1, -1, 1, -1) - \frac{2}{8} (0, 2, 2, 0)$$

$$= (-1, -1/2, 1/2, 0).$$

= (-1, -1/2, 1/2, 0). $|\mathbf{w}_3| = \left| \left(-1, -\frac{1}{2}, \frac{1}{2}, 0 \right) \right| = \frac{1}{2} \left| (-2, -1, 1, 0) \right| = \frac{\sqrt{6}}{2} = \sqrt{\frac{3}{2}}.$

Problem. Approximate the function $f(x) = e^x$ on the interval [-1,1] by a quadratic polynomial.

The best approximation would be a polynomial p(x) that minimizes the distance relative to the uniform norm:

$$||f - p||_{\infty} = \max_{|x| < 1} |f(x) - p(x)|.$$

However there is no analytic way to find such a polynomial. Instead, we are going to find a "least squares" approximation that minimizes the integral norm

$$||f-p||_2 = \left(\int_1^1 |f(x)-p(x)|^2 dx\right)^{1/2}.$$

The norm $\|\cdot\|_2$ is induced by the inner product

$$\langle g, h \rangle = \int_{-1}^{1} g(x)h(x) dx.$$

Therefore $||f - p||_2$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_3 of quadratic polynomials.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^2$ which form a basis for \mathcal{P}_3 . This would yield an orthogonal basis p_0, p_1, p_2 . Then

$$p(x) = \frac{\langle f, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x) + \frac{\langle f, p_1 \rangle}{\langle p_1, p_1 \rangle} p_1(x) + \frac{\langle f, p_2 \rangle}{\langle p_2, p_2 \rangle} p_2(x).$$

Orthogonal polynomials

The **Legendre polynomials** are a sequence of polynomials P_0, P_1, P_2, \ldots such that $\deg P_k = k$, $P_k(1) = 1$, and $P_0, P_1, \ldots, P_{n-1}$ is an orthogonal basis for \mathcal{P}_n relative to the inner product $\langle g, h \rangle = \int_{-1}^1 g(x)h(x)\,dx$. We have $P_0(x) = 1$, $P_1(x) = x$, $P_2(x) = \frac{1}{2}(3x^2 - 1)$, $P_3(x) = \frac{1}{2}(5x^3 - 3x)$.