MATH 304
Linear Algebra

Lecture 31:
Eigenvalues and eigenvectors (continued).



Eigenvalues and eigenvectors of a matrix

Definition. Let A be an nxn matrix. A number
A € R is called an eigenvalue of the matrix A if

Av = \v| for a nonzero column vector v € R".

The vector v is called an eigenvector of A
belonging to (or associated with) the eigenvalue \.

If A is an eigenvalue of A then the nullspace

N(A — Al), which is nontrivial, is called the
eigenspace of A corresponding to \. The
eigenspace consists of all eigenvectors belonging to
the eigenvalue A plus the zero vector.



Characteristic equation

Definition. Given a square matrix A, the equation
det(A — A/) = 0 is called the characteristic
equation of A.

Eigenvalues A of A are roots of the characteristic
equation.

If Ais an nxn matrix then p(\) = det(A— \/) is a
polynomial of degree n. It is called the
characteristic polynomial of A.

Theorem Any nxn matrix has at most n
eigenvalues.



2 1
Example. A = (1 2).

e The matrix A has two eigenvalues: 1 and 3.

e The eigenspace of A associated with the
eigenvalue 1 is the line t(—1,1).

e The eigenspace of A associated with the
eigenvalue 3 is the line t(1,1).

e Eigenvectors v; = (—1,1) and v, = (1,1) of
the matrix A form an orthogonal basis for R?.
e Geometrically, the mapping x — Ax is a stretch

by a factor of 3 away from the line x +y =0 in
the orthogonal direction.



11 -1
Example. A=111 1
00 2
Characteristic equation:
1—-Xx 1 —1
1 1-Xx 1 |=0.
0 0 2—-2A

Expand the determinant by the 3rd row:

1—)\ 1
(2-2) 11—\

(1=AP—1)(2-A) =0 = —A2—-A\)2=0
— AN =0, =2

o



11 —1 X 0

Ax=0 <= [1 1 1 yl =10

00 2 z 0
Convert the matrix to reduced row echelon form:
11 -1 11 —1 110
11 1] — 100 2] — 10 0 1
00 2 00 2 00O

Ax =0 <— {X+y:0’
z=0.

The general solution is (—t, t,0) = t(—1,1,0),

t € R. Thus v; =(—1,1,0) is an eigenvector
associated with the eigenvalue 0. The corresponding
eigenspace is the line spanned by v;.



-1 1 -1\ [/x 0
(A-2x=0 «— 1 -1 1](y]=10
0 0 0/ \z 0
1 -1 1\ /x 0
<~ [0 00 y|l|=10] < x—y+2z=0.
0 00/ \z 0

The general solutionis x=t—s, y=t, z=s,
where t,s € R. Equivalently,

x=(t—s,t,s)=1t(1,1,0)+s(—1,0,1).

Thus v, =(1,1,0) and vz =(—1,0,1) are
eigenvectors associated with the eigenvalue 2.

The corresponding eigenspace is the plane spanned
by v, and vs.



11 -1
Summary. A=|11 1
00 2

e The matrix A has two eigenvalues: 0 and 2.

e The eigenvalue 0 is simple: the corresponding
eigenspace is a line.

e The eigenvalue 2 is of multiplicity 2: the
corresponding eigenspace is a plane.

e Eigenvectors v; = (—1,1,0), vo = (1,1,0), and
v3 = (—1,0,1) of the matrix A form a basis for R>.

e Geometrically, the map x +— Ax is the projection
on the plane Span(vy,vs) along the lines parallel to
vi with the subsequent scaling by a factor of 2.



Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector spaceand L:V — V
be a linear operator. A number \ is called an
eigenvalue of the operator L if |L(v) = Av| for a
nonzero vector v € V. The vector v is called an
eigenvector of L associated with the eigenvalue .

(If V is a functional space then eigenvectors are also
called eigenfunctions.)

If V =R" then the linear operator L is given by
L(x) = Ax, where A is an nxn matrix.

In this case, eigenvalues and eigenvectors of the
operator L are precisely eigenvalues and
eigenvectors of the matrix A.



Eigenspaces

Let L: V — V be a linear operator.
For any A € R, let V) denotes the set of all
solutions of the equation L(x) = Ax.

Then V), is a subspace of V since V) is the kernel
of a linear operator given by x — L(x) — Ax.

V\ minus the zero vector is the set of all
eigenvectors of L associated with the eigenvalue .
In particular, A € R is an eigenvalue of L if and
only if V) # {0}.

If V) # {0} then it is called the eigenspace of L
corresponding to the eigenvalue \.



Example. V = C>*(R), D:V — V, Df =f".

A function f € C*(R) is an eigenfunction of the
operator D belonging to an eigenvalue X if

f'(x) = M(x) for all x € R.

It follows that f(x) = ce™, where c is a nonzero
constant.

Thus each A € R is an eigenvalue of D.
The corresponding eigenspace is spanned by e**.



Example. V =C>®(R), L:V — V, Lf =f".

Lf =M < f"(x) — AMf(x) =0 for all x € R.

It follows that each A € R is an eigenvalue of L and
the corresponding eigenspace V) is two-dimensional.
If A\ >0 then V) = Span(exp(v/Ax), exp(—v/Ax)).
If A <0 then V) = Span(sin(v/—\x), cos(v/—\x)).
If A =0 then V), = Span(1,x).



Let V be a vector space and L: V — V be a linear
operator.

Proposition 1 If v € V is an eigenvector of the
operator L then the associated eigenvalue is unique.

Proof: Suppose that L(v) = A;v and L(v) = Apv. Then
AMV=Xv = (M1 —v=0 = A\ — =0 = )\ = \,.

Proposition 2 Suppose v; and v, are eigenvectors
of L associated with different eigenvalues A\; and \,.
Then v; and v, are linearly independent.

Proof: For any scalar t # 0 the vector tv; is also an
eigenvector of L associated with the eigenvalue ;. Since

A2 # Ap, it follows that v, # tvy. That is, v, is not a scalar
multiple of vy. Similarly, v; is not a scalar multiple of v,.



Let L:V — V be a linear operator.

Proposition 3 If vi, vy, and v3 are eigenvectors of
L associated with distinct eigenvalues A1, Ay, and
A3, then they are linearly independent.
Proof: Suppose that t;v; + thov, + t3vz = 0 for some
ti, tr, t3 € R. Then
L(tyvy + tovp + t3v3) = 0,
tiL(vy) + toL(v2) + t3L(v3) =0,
BV + B Aovs + t3A3vs = 0.

It follows that

tiA1V1 + o Aovo + t3Asvs — A3(tvy + tovo + t3v3) = 0

= t1(A1 — M3)v1 + B(Aa — A3)va = 0.

By the above, v; and v, are linearly independent.
Hence ti(M —A3) =t(Ma—A3) =0 = t;=t,=0
Then t3 =0 as well.



Theorem |If vy, vy, ... v, are eigenvectors of a
linear operator L associated with distinct
eigenvalues A1, Ay, ..., Ak, then vy, vy, ... v, are
linearly independent.

Corollary 1 Let A be an nxn matrix such that the
characteristic equation det(A — A/) =0 has n
distinct real roots. Then R"” has a basis consisting
of eigenvectors of A.

Proof: Let A1, Ay, ..., A, be distinct real roots of the
characteristic equation. Any J\; is an eigenvalue of A, hence
there is an associated eigenvector v;. By the theorem, vectors

Vi,Vo,...,V, are linearly independent. Therefore they form a
basis for R".



Corollary 2 If A, Ay, ..., A\ are distinct real
numbers, then the functions e, e’ ... eM* are
linearly independent.

Proof: Consider a linear operator

D : C>*(R) — C>*(R) given by Df =f',
Then eM*, ... eMX are eigenfunctions of D
associated with distinct eigenvalues Ay, ..., k.
By the theorem, the eigenfunctions are linearly
independent.



