MATH 304

Lecture 38:

Linear Algebra

Rotations in space (continued). Orthogonal polynomials.

$$U = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix}$$
 is an orthogonal matrix.

 $\det U = 1 \implies U$ is a rotation matrix.

Problem. (a) Find the axis of the rotation.(b) Find the angle of the rotation.

The axis is the set of points $\mathbf{x} \in \mathbb{R}^n$ such that $U\mathbf{x} = \mathbf{x} \iff (U - I)\mathbf{x} = \mathbf{0}$. To find the axis, we apply row reduction to the matrix

$$3(U-I) = 3U - 3I = \begin{pmatrix} -2 & -2 & 2 \\ 2 & -4 & -2 \\ 2 & 2 & -2 \end{pmatrix}.$$

Thus
$$U\mathbf{x}=\mathbf{x}\iff \begin{cases} x-z=0,\\ y=0. \end{cases}$$
 The general solution is $x=t,\ y=0,\ z=t,$ where $t\in\mathbb{R}.$

 \implies **d** = (1,0,1) is the direction of the axis.

 $\begin{pmatrix} -2 & -2 & 2 \\ 2 & -4 & -2 \\ 2 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 2 & -4 & -2 \\ 2 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & -6 & 0 \\ 2 & 2 & 2 \end{pmatrix}$

 $\rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & -6 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

$$U = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix}$$

Let ϕ be the angle of rotation. Then the eigenvalues of U are 1, $e^{i\phi}$, and $e^{-i\phi}$. Therefore $\det(U-\lambda I)=(1-\lambda)(e^{i\phi}-\lambda)(e^{-i\phi}-\lambda)$.

Besides, $\det(U - \lambda I) = -\lambda^3 + c_1\lambda^2 + c_2\lambda + c_3$, where $c_1 = \operatorname{tr} U$ (the sum of diagonal entries). It follows that

$$+n I I = 1/2 \longrightarrow \cos \phi = 1/2 \longrightarrow \phi \approx 100 A79$$

 $\operatorname{tr} U = 1 + e^{i\phi} + e^{-i\phi} = 1 + 2\cos\phi.$

$$\operatorname{tr} U = 1/3 \implies \cos \phi = -1/3 \implies \phi \approx 109.47^{\circ}$$

Orthogonal polynomials

 \mathcal{P} : the vector space of all polynomials with real coefficients: $p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$.

Basis for \mathcal{P} : $1, x, x^2, \dots, x^n, \dots$

Suppose that ${\mathcal P}$ is endowed with an inner product.

Definition. Orthogonal polynomials (relative to the inner product) are polynomials $p_0, p_1, p_2, ...$ such that deg $p_n = n$ (p_0 is a nonzero constant) and $\langle p_n, p_m \rangle = 0$ for $n \neq m$.

Orthogonal polynomials can be obtained by applying the *Gram-Schmidt orthogonalization process* to the basis $1, x, x^2, \ldots$:

$$p_0(x) = 1,$$
 $p_1(x) = x - \frac{\langle x, p_0 \rangle}{\langle x, p_0 \rangle} p_0(x)$

$$p_1(x) = x - \frac{\langle x, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x),$$

Then p_0, p_1, p_2, \ldots are orthogonal polynomials.

Theorem (a) Orthogonal polynomials always exist.

(b) The orthogonal polynomial of a fixed degree is unique up to scaling.

(c) A polynomial $p \neq 0$ is an orthogonal polynomial if and only if $\langle p, q \rangle = 0$ for any polynomial q with $\deg q < \deg p$.

(d) A polynomial $p \neq 0$ is an orthogonal polynomial if and only if $\langle p, x^k \rangle = 0$ for any $0 \leq k < \deg p$.

Proof of statement (b): Suppose that P and R are two orthogonal polynomials of the same degree n. Then $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ and $R(x) = b_n x^n + b_{n-1} x^{n-1} + \cdots + b_1 x + b_0$, where $a_n, b_n \neq 0$. Consider a polynomial $Q(x) = b_n P(x) - a_n R(x)$. By construction, deg Q < n. It follows from statement (c) that $\langle P, Q \rangle = \langle R, Q \rangle = 0$. Then $\langle Q, Q \rangle = \langle b_n P - a_n R, Q \rangle = b_n \langle P, Q \rangle - a_n \langle R, Q \rangle = 0$,

which means that Q = 0. Thus $R(x) = (a_n^{-1}b_n) P(x)$.

Example. $\langle p, q \rangle = \int_{-1}^{1} p(x)q(x) dx$.

 $p_2(x) = x^2 - \frac{\langle x^2, 1 \rangle}{\langle 1, 1 \rangle} = x^2 - \frac{1}{3},$

Note that $\langle x^n, x^m \rangle = 0$ if m + n is odd. Hence $p_{2k}(x)$ contains only even powers of x while $p_{2k+1}(x)$ contains only odd powers of x.

pence
$$p_{2k}(x)$$
 contains only even powers of x while $p_{2k+1}(x)$ contains only odd powers of x .
$$p_0(x) = 1$$

 $p_0(x) = 1$ $p_1(x) = x$

$$p_3(x) = x^3 - \frac{\langle x^3, x \rangle}{\langle x, x \rangle} x = x^3 - \frac{3}{5} x.$$

 p_0, p_1, p_2, \dots are called the **Legendre polynomials**.

Instead of normalization, the orthogonal polynomials are subject to **standardization**.

The standardization for the Legendre polynomials is $P_n(1)=1$. In particular, $P_0(x)=1$, $P_1(x)=x$, $P_2(x)=\frac{1}{2}(3x^2-1)$, $P_3(x)=\frac{1}{2}(5x^3-3x)$.

Problem. Find $P_4(x)$.

Let $P_4(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$. We know that $P_4(1) = 1$ and $\langle P_4, x^k \rangle = 0$ for $0 \le k \le 3$.

$$P_4(1) = a_4 + a_3 + a_2 + a_1 + a_0,$$

 $\langle P_4, 1 \rangle = \frac{2}{5}a_4 + \frac{2}{3}a_2 + 2a_0, \ \langle P_4, x \rangle = \frac{2}{5}a_3 + \frac{2}{3}a_1,$
 $\langle P_4, x^2 \rangle = \frac{2}{7}a_4 + \frac{2}{5}a_2 + \frac{2}{3}a_0, \ \langle P_4, x^3 \rangle = \frac{2}{7}a_3 + \frac{2}{5}a_1.$

$$\begin{cases} a_4 + a_3 + a_2 + a_1 + a_0 = 1 \\ \frac{2}{5}a_4 + \frac{2}{3}a_2 + 2a_0 = 0 \\ \frac{2}{5}a_3 + \frac{2}{3}a_1 = 0 \\ \frac{2}{7}a_4 + \frac{2}{5}a_2 + \frac{2}{3}a_0 = 0 \\ \frac{2}{7}a_3 + \frac{2}{5}a_1 = 0 \end{cases} \implies a_1 = a_3 = 0$$

$$\begin{cases} \frac{2}{5}a_3 + \frac{2}{3}a_1 = 0 \\ \frac{2}{7}a_3 + \frac{2}{5}a_1 = 0 \end{cases} \implies a_1 = a_3 = 0$$

$$\begin{cases} a_4 + a_2 + a_0 = 1 \\ \frac{2}{5}a_4 + \frac{2}{3}a_2 + 2a_0 = 0 \\ \frac{2}{7}a_4 + \frac{2}{5}a_2 + \frac{2}{3}a_0 = 0 \end{cases} \iff \begin{cases} a_4 = \frac{35}{8} \\ a_2 = -\frac{30}{8} \\ a_0 = \frac{3}{8} \end{cases}$$

Thus $P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$.

Legendre polynomials

Problem. Find a quadratic polynomial that is the best least squares fit to the function f(x) = |x| on the interval [-1,1].

The best least squares fit is a polynomial p(x) that minimizes the distance relative to the integral norm

$$||f-p|| = \left(\int_{-1}^{1} |f(x)-p(x)|^2 dx\right)^{1/2}$$

over all polynomials of degree 2.

The norm ||f - p|| is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_3 of polynomials of degree at most 2.

The Legendre polynomials P_0, P_1, P_2 form an orthogonal basis for \mathcal{P}_3 . Therefore

for
$$P_3$$
. Therefore
$$p(x) = \frac{\langle f, P_0 \rangle}{\langle P_0, P_0 \rangle} P_0(x) + \frac{\langle f, P_1 \rangle}{\langle P_1, P_1 \rangle} P_1(x) + \frac{\langle f, P_2 \rangle}{\langle P_2, P_2 \rangle} P_2(x).$$

$$\langle f, P_0 \rangle = \int_{-1}^1 |x| \, dx = 2 \int_0^1 x \, dx = 1,$$

$$\langle f, P_1 \rangle = \int_{-1}^{1} |x| x \, dx = 0,$$

$$\langle t, P_1 \rangle = \int_{-1} |x| \, x \, dx = 0$$

$$\langle f, F_1 \rangle = \int_{-1}^{1} |x| \, x \, dx = 0$$

$$\langle f, F_2 \rangle = \int_{-1}^{1} |x| \, \frac{3x^2 - 1}{1 + 1}$$

$$\langle f, P_2 \rangle = \int_{-1}^{1} |x| \frac{3x^2 - 1}{x^2 + 1}$$

In general,
$$\langle P_n, P_n \rangle = \frac{2}{2n+1}$$
.

 $\langle f, P_2 \rangle = \int_{-1}^{1} |x| \frac{3x^2 - 1}{2} dx = \int_{0}^{1} x(3x^2 - 1) dx = \frac{1}{4},$

$$= \int_0^1 x(3x^2 - 1) dx = \frac{1}{4},$$

$$|P_2\rangle = \int_0^1 \left(\frac{3x^2 - 1}{2}\right)^2 dx = \frac{1}{4}$$

$$\langle P_0, P_0 \rangle = \int_{-1}^1 dx = 2, \qquad \langle P_2, P_2 \rangle = \int_{-1}^1 \left(\frac{3x^2 - 1}{2} \right)^2 dx = \frac{2}{5}.$$

Problem. Find a quadratic polynomial that is the best least squares fit to the function f(x) = |x| on the interval [-1,1].

Solution:
$$p(x) = \frac{1}{2}P_0(x) + \frac{5}{8}P_2(x)$$

= $\frac{1}{2} + \frac{5}{16}(3x^2 - 1) = \frac{3}{16}(5x^2 + 1)$.

Recurrent formula for the Legendre polynomials: $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$.

For example, $4P_4(x) = 7xP_3(x) - 3P_2(x)$.

Legendre polynomials

Definition. Chebyshev polynomials $T_0, T_1, T_2, ...$ are orthogonal polynomials relative to the inner product

$$\langle p,q\rangle = \int_{-1}^{1} \frac{p(x)q(x)}{\sqrt{1-x^2}} dx,$$

with the standardization $T_n(1) = 1$.

Remark. "T" is like in "Tschebyscheff".

Change of variable in the integral: $x = \cos \phi$.

$$egin{aligned} \langle p,q
angle &= -\int_0^\pi rac{p(\cos\phi)\,q(\cos\phi)}{\sqrt{1-\cos^2\phi}}\cos'\phi\,d\phi \ &= \int_0^\pi p(\cos\phi)\,q(\cos\phi)\,d\phi. \end{aligned}$$

Theorem. $T_n(\cos\phi) = \cos n\phi$.

$$\langle T_n, T_m \rangle = \int_0^{\pi} T_n(\cos \phi) T_m(\cos \phi) d\phi$$

= $\int_0^{\pi} \cos(n\phi) \cos(m\phi) d\phi = 0$ if $n \neq m$.

Recurrent formula: $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$.

Recurrent formula:
$$I_{n+1}(x) = 2xI_n(x) - I_{n-1}(x)$$

 $I_n(x) = 1$

$$T_0(x) = 1, T_1(x) = x,$$

$$I_0(x) = 1, \quad I_1(x) = x,$$
 $T_2(x) = 2x^2 - 1,$

$$I_2(x) = 2x^2 - 1,$$

 $T_3(x) = 4x^3 - 3x,$
 $T_4(x) = 8x^4 - 8x^2 + 1, ...$

That is,
$$\cos 2\phi = 2\cos^2 \phi - 1$$
, $\cos 3\phi = 4\cos^3 \phi - 3\cos \phi$,

$$\cos 4\phi = 8\cos^4 \phi - 8\cos^2 \phi + 1, \dots$$

Chebyshev polynomials