MATH 304
Linear Algebra

Lecture 39:
Markov chains.



Stochastic process

Stochastic (or random) process is a sequence of
experiments for which the outcome at any stage
depends on a chance.

Simple model:

e a finite number of possible outcomes (called
states);

e discrete time

Let S denote the set of the states. Then the
stochastic process is a sequence sy, S1, S, ...,
where all s, € S depend on chance.

How do they depend on chance?



Bernoulli scheme

Bernoulli scheme is a sequence of independent
random events.

That is, in the sequence sy, s1,5»,... any outcome
s, is independent of the others.

For any integer n > 0 we have a probability
distribution p(™ on S. This means that each state
s € S is assigned a value p§”) > 0 so that

> e p!” = 1. Then the probability of the event

S, =S is pﬁ”).

The Bernoulli scheme is called stationary if the
probability distributions p(") do not depend on n.



Examples of Bernoulli schemes:

e Coin tossing
2 states: heads and tails. Equal probabilities: 1/2.

e Die rolling
6 states. Uniform probability distribution: 1/6 each.

e Lotto Texas

Any state is a 6-element subset of the set
{1,2,...,54}. The total number of states is
25,827,165. Uniform probability distribution.



Markov chain

Markov chain is a stochastic process with discrete
time such that the probability of the next outcome
depends only on the previous outcome.

Let S={1,2,...,k}. The Markov chain is
determined by transition probabilities p,(jt),
1<, <k, t>0, and by the initial probability
distribution g;, 1 < i < k.

Here g; is the probability of the event sy =/, and
p,g-t) is the conditional probability of the event

st+1 = J provided that s; = i. By construction,
P g >0, Y ,q:=1, and 3, pif) = 1.



We shall assume that the Markov chain is
time-independent, i.e., transition probabilities do

not depend on time: p,(jt) = pjj.

Then a Markov chainon S ={1,2,... k} is
determined by a probability vector

xo = (g1, G2, ..., qx) € R¥ and a kxk transition
matrix P = (p;). The entries in each row of P
add up to 1.

Let sg,51,5,... be the Markov chain. Then the
vector Xy determines the probability distribution of
the initial state s;.

Problem. Find the (unconditional) probability
distribution for any s,,.



Random walk

0 1/2 1/2
Transition matrix: P= [0 1/2 1/2
1 0 0



Problem. Find the (unconditional) probability
distribution for any s,, n > 1.

The probability distribution of s,_1 is given by a
probability vector x, 1 = (a1,...,ax). The
probability distribution of s, is given by a vector
Xnp = (bl, ceey bk)
We have

b; = aipij + apoj + - - +akpij, 1 <j < k.
That is,
pi1 ... Pik
(bl,...,bk):(al,...,ak) T
Pk1 .- Pk



X, =X, 1P = x! =(x,_1P)" = P"x[

Thus x] = Qx/ ;, where @ = P" and the vectors
are regarded as row vectors.

Then xT Qx,, L= Q(Qx,) ) = Q%] ,

Similarly, xI = @3x 5, and so on.

: T __ no T
Finally, |x, = Q"X .




Example. Very primitive weather model:
Two states: “sunny” (1) and “rainy” (2).

. . (0.9 0.1
Transition matrix: P = <0.5 05).

Suppose that xo = (1,0) (sunny weather initially).

Problem. Make a long-term weather prediction.

The probability distribution of weather for day n is
given by the vector x/ = Q"x/, where Q@ = PT.

To compute ", we need to diagonalize the matrix

0.9 0.5
Q= <o.1 0.5)'



det(Q - A) |0.9—)\ 0.5 |_

0.1 05—\
=\ —14\+04= (A—=1)(A—0.4).
Two eigenvalues: A1 =1, A\, =0.4.

@-nv=0 = (01 3) ;)=o)

— (x,y)=1t(51), teR.

@-omv=0 = (g7 ¢7) (5)= (o)

— (x,y)=1t(-1,1), t e R

vi = (5,1)7 and v, = (—1,1)7 are eigenvectors of
Q@ belonging to eigenvalues 1 and 0.4, respectively.



x! = avy + vy = {

ba— =1 o Ja= 1/6
a+p3=0 g=-1/6
Now x/ = Q"x] = Q"(av; + Bv;) =

= Oz(anl) + 6(0’7\’2) = aVv] + (0.4)”6V2,
which converges to the vector av; = (5/6,1/6)7
as n — oo.
The vector x,, = (5/6,1/6) gives the limit
distribution. Also, it is a steady-state vector.

Remark. The limit distribution does not depend on
the initial distribution.



