MATH 304-502/506 Fall 2011

Sample problems for Test 2: Solutions
Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Let Mj2(R) denote the vector space of 2 x 2 matrices with real
entries. Consider a linear operator L : Mso(R) — Mo (R) given by

()= 06 o)

Find the matrix of the operator L with respect to the basis

10 01 00 00
(on) me(00) (o) ()

Let Mj denote the desired matrix. By definition, M} is a 4 X 4 matrix whose columns are
coordinates of the matrices L(E1), L(E>), L(E3), L(E4) with respect to the basis Fy, Es, F3, E4. We

have that
10 1 2 1 2
L(Ey) = < ) < i) = <0 0> =1F1 +2F5 4+ 0FE3 + 0Fy,

w
O =

N~ ~—__
Il

=3E1 +4F> + 03 + 0Ey,

N O

0E1 +0Ey + 1E3 + 2Ey,

= 0E1 + OEQ + 3E3 =+ 4E4.

= O

It follows that

My, =

S O N =
S O = W
o = OO
= w O O

Problem 2 (20 pts.) Find a linear polynomial which is the best least squares fit to the
following data:
v || =2[-1][0]1]2
fl@)]|-3]-2]1][2]5

We are looking for a function f(x) = ¢1 + cox, where ¢1, co are unknown coefficients. The data of
the problem give rise to an overdetermined system of linear equations in variables ¢; and cs:

Cc1 — 262 = —3,
Cl — Cy = —2,
61:1,
c1+c2 =2,

c1 + 2co = 5.
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This system is inconsistent. We can represent it as a matrix equation Ac =y, where

1 -2 -3
1 -1 —9
A=11 o, c:<cl>, y=| 1
11 = 2
1 2 5

1 -2 -3
(1 1111>}_é(c1)_<1 1111>_f
2 101 2); |\e -2 -1 0 1 2 5
12 5

5 0 C1 . 3 — Ccl = 3 / 5
0 10 Co o 20 Cy = 2
Thus the function f(x) = %—i—Qaj is the best least squares fit to the above data among linear polynomials.

A

Problem 3 (25 pts.) Let V be a subspace of R* spanned by the vectors x; = (1,1,1,1)
and x5 = (1,0, 3,0).
(i) Find an orthonormal basis for V.

First we apply the Gram-Schmidt orthogonalization process to vectors xj,xs and obtain an or-
thogonal basis vi, va for the subspace V:

X2 V1

4
V1:X1:(1,1,1,1), Vo = X9 — V1:(1,0,3,0)—1(1,1,1,1):(0,—1,2,—1).

Vi-V]
Then we normalize vectors vi, vo to obtain an orthonormal basis w1, wy for V:

Vi1 1 1 V9 1 1
Wi = = —Vi] = — 1, 1, 1’1 R Wo = = —V9) = —— 0,—1,27_1 .
P vl 2 5 ) T vel T VG Jé( )




(ii) Find an orthonormal basis for the orthogonal complement V.

Since the subspace V is spanned by vectors (1,1,1,1) and (1,0,3,0), it is the row space of the

matrix
11 11
A= <1 0 3 0) '
Then the orthogonal complement V= is the nullspace of A. To find the nullspace, we convert the
matrix A to reduced row echelon form:

1 111 . 1 0 30 R 10 30
1 0 30 1111 01 -2 1)/)°
Hence a vector (z1, 2,23, 24) € R* belongs to V* if and only if

1 +3x3=0 1 = —313
To —2x3+ x4 =0 To = 23 — T4

The general solution of the system is (z1,x9, 3, z4) = (=3t,2t — s,t,s) = t(—3,2,1,0) + s(0,—1,0,1),
where ¢, s € R. Tt follows that V' is spanned by vectors x3 = (0, —1,0,1) and x4 = (—3,2,1,0). It
remains to orthogonalize and normalize this basis for V=

: )
vi=x3=(0,-1,0,1), vi=x4— 2 Vys=(-3,2,1,0)— —(0,-1,0,1) = (=3,1,1,1),
V3 :-V3 2
V3 1 vy 1 1
W3 = = _(07_1707 1)’ Wy = = Vy = (_3717171)
Ivsl V2 [vall  2v/3 2V/3
Thus the vectors ws = %(O, —1,0,1) and wy = ﬁ(—iﬁ, 1,1,1) form an orthonormal basis for V.

Alternative solution: Suppose that an orthonormal basis wi, ws for the subspace V' has been
extended to an orthonormal basis w1, wa, w3, wy for R%. Then the vectors ws, w4 form an orthonormal
basis for the orthogonal complement V.

We know that vectors vi = (1,1,1,1) and vy = (0, —1,2, —1) form an orthogonal basis for V. This
basis can be extended to a basis for R* by adding two vectors from the standard basis. For example,
we can add vectors e3 = (0,0, 1,0) and e4 = (0,0,0,1). The vectors vi,vs,es,es do form a basis for
R* since the matrix whose rows are these vectors is nonsingular:

1 11 1
0 -1 2 -1
0 01 ol 170
0 00 1

To orthogonalize the basis vi,vs,es, e4, we apply the Gram-Schmidt process (note that the vectors
vy and vy are already orthogonal):

€3 V] €3 - Vo 1 2 1
=e3 — — =(0,0,1,0) — —(1,1,1,1) — =(0,—-1,2,—-1) = —(—3,1,1,1
V3 €3 V1‘V1V1 V2'V2V2 (7 ) Ly ) 4(? y Ly ) 6(7 ) 4y ) 12( 5 Ly Ly )a
€4V €4V €4 V3
V4 = €4 — V1 — Vo — V3 =
V1-Vy V3 V2 V3 - V3
1 -1 1/12 1 1
= 1) —=(1,1,1,1) = —(0,—1,2,—1) — L= . —(=3,1,1,1) = =(0,—1,0, 1).
(070707) 4() 9 7) 6(07 y <~ ) 1/12 12( 3) 9 7) 2(07 707)



It remains to normalize vectors vy, vo, v, vy:

Vi 1 A\’ 1
le—:_(lvlala]-)v WQZ—:—(Oa_1>2’_1)’
[vall 2 [vall V6
V3 1 V4 1
w3 = —— =+V12v3 = ——(-3,1,1,1), wy=-—=+v2vy=—(0,-1,0,1).
[vs] 2v/3 [ V4l V2
We have obtained an orthonormal basis wi, wo, ws, ws for R? that extends an orthonormal basis
w1, wo for the subspace V. It follows that wg = 21%(—3, 1,1,1), wy = %(0, —1,0,1) is an orthonormal

basis for V1.
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Problem 4 (30 pts.) Let A= |1
0

DN = DN
— = O

(i) Find all eigenvalues of the matrix A.
The eigenvalues of A are roots of the characteristic equation det(A — AI) = 0. We obtain that

1—-x 2 0
det(A—=X)=| 1 1-X 1 [=(1-XN3>=2(1-X)—-2(1-2))
0 2 1-2A
=(1-N(A=-M)=4)=1-0)(1-N)-2)(1-=N)+2)=-A=DA+1)(A-3).

Hence the matrix A has three eigenvalues: —1, 1, and 3.

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (x,y, z) of A associated with an eigenvalue \ is a nonzero solution of the vector
equation (A — AI)v = 0. To solve the equation, we apply row reduction to the matrix A — AI.

First consider the case A = —1. The row reduction yields
2 20 110 1 10 110 1 0 -1
A+I=[11 2 1|—-1[]1 2 1|—=(l011]—=1(011|—=1]01 1
0 2 2 0 2 2 0 2 2 0 00 0 0
Hence
1 0 -1 x 0 =0
(A+IH)iv=0 <+ 01 1 y|l =10 = { +z:d
00 0/ \z 0 yre=
The general solution is ¢ = ¢, y = —t, z = t, where ¢t € R. In particular, vi = (1,—1,1) is an

eigenvector of A associated with the eigenvalue —1.
Secondly, consider the case A = 1. The row reduction yields

0 2 0 1 01 1 01 1 0 1
A-I=11 0 1] —10 2 0]—=101O0]—=1010
0 2 0 0 2 0 0 2 0 0 0O
Hence
1 01 T 0
(A-Ihv=0 <= 010 yl=10 = {foZQ
000/ \z 0 y=



The general solution is © = —t, y = 0, z = ¢, where t € R. In particular, vo = (—1,0,1) is an
eigenvector of A associated with the eigenvalue 1.
Finally, consider the case A = 3. The row reduction yields

2 2 0 1 -1 0 1 -1 0
A-3r= 1 =2 1|1 2 1]|=]0 -1 1
0 2 -2 0 2 -2 0 2 -2
1 -1 0 1 -1 0 10 -1
1o 1 —1]=f0o 1 —1]=(o0o 1 -1
0 2 -2 0 0 0 00 0
Hence
10 -1 T 0 .
(A-3Iv=0 < [0 1 -1]|[y]=(0] <= {x_z: ’
00 0/)\z 0 y—&2=5

The general solution is x = t, y = t, z = t, where t € R. In particular, v3 = (1,1,1) is an eigenvector
of A associated with the eigenvalue 3.

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for R? formed by its eigenvectors. Namely,
the vectors vi = (1,—1,1), vo = (—1,0,1), and v3 = (1,1,1) are eigenvectors of the matrix A
belonging to distinct eigenvalues. Therefore these vectors are linearly independent. It follows that
V1, Vo, Vs is a basis for R3.

Alternatively, the existence of a basis for R3 consisting of eigenvectors of A already follows from
the fact that the matrix A has three distinct eigenvalues.

(iv) Find all eigenvalues of the matrix A2

Suppose that v is an eigenvector of the matrix A associated with an eigenvalue A, that is, v # 0
and Av = Av. Then
A’v = A(Av) = A(Av) = M(Av) = \(wv) = A?v.
Therefore v is also an eigenvector of the matrix A? and the associated eigenvalue is A2. We already
know that the matrix A has eigenvalues —1, 1, and 3. It follows that A? has eigenvalues 1 and 9.

Since a 3 x 3 matrix can have up to 3 eigenvalues, we need an additional argument to show that
1 and 9 are the only eigenvalues of A%2. The matrix A is diagonalizable. Namely, A = UBU ™!, where

-1 0 0
B = 010
0 0 3
and U is the matrix whose columns are eigenvectors vi, va, v3:

1
U=1 -1
1

_ o =
—

Then A2 = UBU'UBU~! = UB2U L. 1t follows that

det(A? — M) = det(UB*U ™ — XI) = det(UB*U ™" = U(M)U ")
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= det(U(B? — \XI)U ') = det(U) det(B* — AI) det(U ") = det(B?* — \I).

Thus the matrix A2 has the same characteristic polynomial as the diagonal matrix
1 00
B=(0 1 0
009
Consequently, the matrices A% and B? have the same eigenvalues. The latter has eigenvalues 1 and 9.

Bonus Problem 5 (15 pts.) Let L:V — W be a linear mapping of a finite-dimensional
vector space V to a vector space W. Show that

dim Range(L) + dim ker(L) = dim V.

The kernel ker(L) is a subspace of V. Since the vector space V' is finite-dimensional, so is ker(L).
Take a basis vi,va, ..., vy for the subspace ker(L), then extend it to a basis vi,..., v, ug,ug, ..., Uy,
for the entire space V. We are going to prove that vectors L(u;), L(uz), ..., L(u,,) form a basis for
the range L(V). Then dim Range(L) = m, dimker(L) =k, and dimV =k + m.

Spanning: Any vector w € Range(L) is represented as w = L(v), where v € V. We have

vV = a1V + vy + -+ v + Brug + foug + -+ Brug,
for some «;, 3; € R. It follows that
w = L(V) = 041L(V1) + -+ osz(Vk) + ﬂlL(ul) + -+ ﬂmL(um) = ,@1[/(111) —+ -+ ﬁmL(um)

(L(v;) = 0 since v; € ker(L)). Thus Range(L) is spanned by the vectors L(uy), L(ug), ..., L(uy,).
Linear independence: Suppose that ¢;L(u;) + taL(ug) + - - - + ¢t L(uyy,) = 0 for some t; € R. Let
u=tju] + toug + - - - + t,, Uy, Since

L(u) =t1L(uy) + taL(u2) + - - -+t L(uy,) =0,

the vector u belongs to the kernel of L. Therefore u = s1vy + savp + - -+ + s vy, for some s; € R. It
follows that

tiug +tous + - -+t — S1VE — S9ve — - - — SV =u—u = 0.
Linear independence of vectors vi,..., Vg, ug,...,u,, implies that t; =ty =--- =t,, = 0 (as well as
s1 =83 =--- =5 =0). Thus the vectors L(u;), L(uz),..., L(u,,) are linearly independent.



