MATH 304
Linear Algebra

Lecture 15:
Wronskian.
The Vandermonde determinant.
Basis of a vector space.



Linear independence

Definition. Let V be a vector space. Vectors
Vi,Vo, ...,V € V are called linearly dependent if they
satisfy a relation

r1V1—|—r2V2—|—"'—|—I’ka:0,

where the coefficients ry,...,r, € R are not all equal to zero.
Otherwise the vectors vy, vy, ..., v, are called linearly
independent. That is, if

I’1V1—|—I’2V2+' . '—|-I’ka = 0 — n=-+--=r= 0

A set S C V is linearly dependent if one can find some
distinct linearly dependent vectors vy, ..., v, in S. Otherwise
S is linearly independent.

Theorem Vectors vy,...,v, € V are linearly dependent if
and only if one of them is a linear combination of the other
k — 1 vectors.



Some facts on linear independence

Let Sp and S be subsets of a vector space V.

e If S C S and S is linearly independent, then so is S.
o If S5o C S and S is linearly dependent, then so is S.

e If S is linearly independent in V' and V is a subspace of
W, then S is linearly independent in W.

e The empty set is linearly independent.

e Any set containing 0 is linearly dependent.

e Two vectors v; and v, are linearly dependent if and only if
one of them is a scalar multiple the other.

e Two nonzero vectors v; and v, are linearly dependent if
and only if either of them is a scalar multiple the other.

e If Sy is linearly independent and vy € V' '\ Sy then
SoU{vo} is linearly independent if and only if vo ¢ Span(Sp).



Problem. Show that functions e*, e?*, and &3*
are linearly independent in C*°(R).

Suppose that aeX + be?* + ce> =0 for all x € R, where
a, b, ¢ are constants. We have to show that a=b=c =0.

Differentiate this identity twice:
ae* + be* + ce® =0,
ae* + 2be* + 3ce®* =0,
aeX + 4be* + 9ce® = 0.

It follows that A(x)v = 0, where
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Since the matrix A(x) is invertible, we obtain
Axv=0 = v=0 = a=b=c=0
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Wronskian

Let fi,f,...,f, be smooth functions on an interval
[a, b]. The Wronskian W{f, f, ... f] is a
function on [a, b] defined by

A9 A0 7()
WIA, f,.... £](x) = 1(x) 2(:X) ,,(.x)
00 B0 e T

Theorem If W[f,f,..., f](x0) # 0 for some
Xo € [a, b] then the functions fi, f, ..., f, are
linearly independent in C|a, b].



Theorem Let A\, Ay, ..., Ay be distinct real

numbers. Then the functions e, e
are linearly independent.
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The Vandermonde determinant

Definition. The Vandermonde determinant is
the determinant of the following matrix

(1 xp X2 o x{” 1\
2 n—1
1 xo x5 - X
V=11 x3 x32 X3y 1,
\1 Xp X2 e x,',’_1)
where xi,x,...,x, € R. Equivalently,
Y Y y

1
V = (a,J)1<,J<,,, where a; = xJ



Examples.

1 X1 x x
[ ] = - .
1 x 2 1
2 1 0
X1 X] X1
o |1 x x22 =11 x x22 — X1Xo
X3 x§ 1 x3 x§ — X1X3
1 0 0 5
5 Xo — X1 Xy — X1X2
=11 o—x1 x5 —x1x2| = >
X3 — X1 X3 — X1X3
5 3
1 x3—x1 x5 —x1x3
1 X2 1 X2
= (x —x1) ) = (2 —x)(6—x)
X3— X X2 —X1X3 1 x3

= (x0 — x1)(x3 — x1) (X3 — X2).




Theorem

1 xg x2 - xl"_1

1 x, X2 - xgt

1 x3 X2 - x| = H (x;j — xi).
Cor : 1<i<j<n

1 x, x,% x,’]_l

Corollary The Vandermonde determinant is not
equal to 0 if and only if the numbers x1,x, ..., X,
are distinct.



Let x1,x0,...,x, be distinct real numbers.

Theorem For any by, by, ..., b, € R there exists a

unique polynomial p(x) = ap+aix+---+a, 1x" 1
of degree less than n such that p(x;) = b;,
1</<n.

ap + aixy + 32X12 44 an_1X1"_1 = by

ag + arxo + 32X22 + - an_1X2n_1 = b,

a0+ axy + ax2 + -+ ap_1xl = b,
ap, a1, ...,ap,_1 are unknowns. The coefficient

matrix is the Vandermonde matrix.



Basis

Definition. Let V be a vector space. Any linearly
independent spanning set for V' is called a basis.

Suppose that a set S C V is a basis for V.

“Spanning set” means that any vector v € V can be
represented as a linear combination

V = vy + nvy + -+ Vg,
where vy, ..., v, are distinct vectors from S and

r,...,re € R, “Linearly independent” implies that the above
representation is unique:

V=rVi+nV+ -+ Vg =rvy+ nv, + -+ rvg
= (n—rvit(n—rva+---+(rn—r)vk=0

— n—-n=n—-rn=...=rn—r.=0



Examples. e Standard basis for R":
e; =(1,0,0,...,0,0), e, =(0,1,0,...,0,0),...,
e, =(0,0,0,...,0,1).

Indeed, (xi,X2,...,X,) = Xx1€1 + X2€3 + - - - + X,€,.

e (32).(63)(2)- ()

form a basis for M ,(R).

(2 a) =0 0) 20 0) <3 0) oo 3)

e Polynomials 1, x,x?,...,x""! form a basis for

Pp={ao+ax+--+a,1x":a €R}L

e The infinite set {1,x,x2%,...,x",...} is a basis
for P, the space of all polynomials.



Let v,vi,vo,....,vp, € R" and r, 1, ..., rx € R,
The vector equation rvi+nvo+---+rnvy =V is
equivalent to the matrix equation Ax = v, where

rn
A= (vi,vo, ..., V), X =
rg
That is, A is the nx k matrix such that vectors vy, vy, ..., v,
are consecutive columns of A.
e Vectors vy,...,v, span R" if the row echelon
form of A has no zero rows.
e Vectors vy,...,vy are linearly independent if

the row echelon form of A has a leading entry in
each column (no free variables).
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linear independence linear independence
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spanning no spanning
no linear independence no linear independence



Bases for R”

Let vq,vy,..., v, be vectors in R”.

Theorem 1 If kK < n then the vectors
Vi,Vo,...,V, do not span R”".

Theorem 2 If kK > n then the vectors
V1,Vo, ...,V are linearly dependent.

Theorem 3 If kK = n then the following conditions
are equivalent:

(i) {vi,v2,...,v,} is a basis for R”;

(ii) {v1,v2,...,v,} is a spanning set for R";

(iii) {vi,v2,...,v,} is a linearly independent set.



