MATH 304

Lecture 28:

Linear Algebra

Inner product spaces.
Orthogonal sets.

Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\alpha: V \to \mathbb{R}$, usually denoted $\alpha(\mathbf{x}) = \|\mathbf{x}\|$, is called a **norm** on V if it has the following properties:

(i) $\|\mathbf{x}\| \ge 0$, $\|\mathbf{x}\| = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\|r\mathbf{x}\| = |r| \|\mathbf{x}\|$ for all $r \in \mathbb{R}$ (homogeneity) (iii) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)

A **normed vector space** is a vector space endowed with a norm. The norm defines a distance function on the normed vector space: $dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$.

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

•
$$\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|).$$

• $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}, \ p \ge 1.$

Examples. $V = C[a, b], f : [a, b] \to \mathbb{R}.$

$$\bullet \quad \|f\|_{\infty} = \max_{a \le x \le h} |f(x)|.$$

•
$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p \ge 1.$$

Inner product

The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, is called an **inner product** on V if it is positive, symmetric, and bilinear. That is, if (i) $\langle \mathbf{x}, \mathbf{x} \rangle > 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (symmetry) (iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity) (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (distributive law)

An **inner product space** is a vector space endowed with an inner product.

Examples. $V = \mathbb{R}^n$.

$$\bullet \quad \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n.$$

$$ullet \langle \mathbf{x}, \mathbf{y}
angle = d_1 x_1 y_1 + d_2 x_2 y_2 + \cdots + d_n x_n y_n,$$
 where $d_1, d_2, \ldots, d_n > 0.$

Examples. V = C[a, b].

•
$$\langle f,g\rangle = \int_a^b f(x)g(x) dx$$
.

• $\langle f,g\rangle = \int^{D} f(x)g(x)w(x) dx$,

where w is bounded, piecewise continuous, and w > 0 everywhere on [a, b].

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then $\langle \mathbf{x}, \mathbf{v} \rangle^2 < \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in V$.

Proof: For any
$$t \in \mathbb{R}$$
 let $\mathbf{v}_t = \mathbf{x} + t\mathbf{y}$. Then $\langle \mathbf{v}_t, \mathbf{v}_t \rangle = \langle \mathbf{x} + t\mathbf{y}, \mathbf{x} + t\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} + t\mathbf{y} \rangle + t\langle \mathbf{y}, \mathbf{x} + t\mathbf{y} \rangle$
$$= \langle \mathbf{x}, \mathbf{x} \rangle + t\langle \mathbf{x}, \mathbf{y} \rangle + t\langle \mathbf{y}, \mathbf{x} \rangle + t^2 \langle \mathbf{y}, \mathbf{y} \rangle.$$

Assume that $\mathbf{y} \neq \mathbf{0}$ and let $t = -\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\langle \mathbf{y}, \mathbf{y} \rangle}$. Then $\langle \mathbf{v}_t, \mathbf{v}_t \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + t \langle \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle - \frac{\langle \mathbf{x}, \mathbf{y} \rangle^2}{\langle \mathbf{v}, \mathbf{v} \rangle}$.

Since $\langle \mathbf{v}_t, \mathbf{v}_t \rangle \geq 0$, the desired inequality follows. In the case $\mathbf{y} = \mathbf{0}$, we have $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{y} \rangle = 0$.

Cauchy-Schwarz Inequality:

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle}.$$

Corollary 1 $|\mathbf{x} \cdot \mathbf{y}| < ||\mathbf{x}|| \, ||\mathbf{y}||$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Equivalently, for all $x_i, y_i \in \mathbb{R}$,

$$(x_1y_1+\cdots+x_ny_n)^2 \leq (x_1^2+\cdots+x_n^2)(y_1^2+\cdots+y_n^2).$$

Corollary 2 For any $f, g \in C[a, b]$,

$$\left(\int_{a}^{b} f(x)g(x) dx\right)^{2} \leq \int_{a}^{b} |f(x)|^{2} dx \cdot \int_{a}^{b} |g(x)|^{2} dx.$$

Norms induced by inner products

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ is a norm.

Proof: Positivity is obvious. Homogeneity:

$$||r\mathbf{x}|| = \sqrt{\langle r\mathbf{x}, r\mathbf{x} \rangle} = \sqrt{r^2 \langle \mathbf{x}, \mathbf{x} \rangle} = |r| \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

Triangle inequality (follows from Cauchy-Schwarz's):

$$||\mathbf{x} + \mathbf{y}||^{2} = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

$$= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$\leq \langle \mathbf{x}, \mathbf{x} \rangle + |\langle \mathbf{x}, \mathbf{y} \rangle| + |\langle \mathbf{y}, \mathbf{x} \rangle| + \langle \mathbf{y}, \mathbf{y} \rangle$$

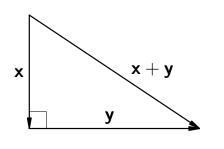
$$< ||\mathbf{x}||^{2} + 2||\mathbf{x}|| ||\mathbf{y}|| + ||\mathbf{y}||^{2} = (||\mathbf{x}|| + ||\mathbf{y}||)^{2}.$$

Examples. • The length of a vector in \mathbb{R}^n , $|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$,

is the norm induced by the dot product

$$\mathbf{x} \cdot \mathbf{v} = x_1 v_1 + x_2 v_2 + \cdots + x_n v_n.$$

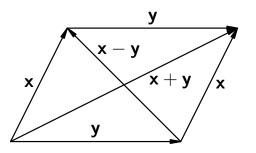
• The norm $||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$ on the vector space C[a,b] is induced by the inner product $\langle f,g\rangle = \int_a^b f(x)g(x) dx$.


Angle

Since $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| \, ||\mathbf{y}||$, we can define the *angle* between nonzero vectors in any vector space with an inner product (and induced norm):

$$\angle(\mathbf{x}, \mathbf{y}) = \arccos \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Then $\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \angle (\mathbf{x}, \mathbf{y}).$


In particular, vectors \mathbf{x} and \mathbf{y} are **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Pythagorean Law:

$$\mathbf{x} \perp \mathbf{y} \implies \|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$

Proof:
$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

 $= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$
 $= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2.$

Parallelogram Identity:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$$

Proof:
$$\|\mathbf{x}+\mathbf{y}\|^2 = \langle \mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle.$$

Similarly, $\|\mathbf{x}-\mathbf{y}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle.$
Then $\|\mathbf{x}+\mathbf{y}\|^2 + \|\mathbf{x}-\mathbf{y}\|^2 = 2\langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{y}, \mathbf{y} \rangle = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2.$

Orthogonal sets

Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$.

Definition. A nonempty set $S \subset V$ of nonzero vectors is called an **orthogonal set** if all vectors in S are mutually orthogonal. That is, $\mathbf{0} \notin S$ and $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for any $\mathbf{x}, \mathbf{y} \in S$, $\mathbf{x} \neq \mathbf{y}$.

An orthogonal set $S \subset V$ is called **orthonormal** if $\|\mathbf{x}\| = 1$ for any $\mathbf{x} \in S$.

Remark. Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ form an orthonormal set if and only if

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Examples. \bullet $V = \mathbb{R}^n$, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$.

The standard basis $\mathbf{e}_1 = (1, 0, 0, \dots, 0)$, $\mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \mathbf{e}_n = (0, 0, 0, \dots, 1).$

•
$$V = \mathbb{R}^3$$
, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$.

It is an orthonormal set.

$$\mathbf{v}_1 = (3, 5, 4), \ \mathbf{v}_2 = (3, -5, 4), \ \mathbf{v}_3 = (4, 0, -3).$$

 $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$, $\mathbf{v}_1 \cdot \mathbf{v}_3 = 0$, $\mathbf{v}_2 \cdot \mathbf{v}_3 = 0$.

$$\mathbf{v}_1 \cdot \mathbf{v}_1 = 50$$
, $\mathbf{v}_2 \cdot \mathbf{v}_2 = 50$, $\mathbf{v}_3 \cdot \mathbf{v}_3 = 25$.
Thus the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is orthogonal but not exthenormal set is formed by

orthonormal. An orthonormal set is formed by normalized vectors $\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$, $\mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$, $\mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_2\|}$.

•
$$V = C[-\pi, \pi], \langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx.$$

 $f_1(x) = \sin x$, $f_2(x) = \sin 2x$, ..., $f_n(x) = \sin nx$, ...

$$\langle f_m, f_n \rangle = \int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \begin{cases} \pi & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$

Thus the set $\{f_1, f_2, f_3, \dots\}$ is orthogonal but not orthonormal.

It is orthonormal with respect to a scaled inner product

$$\langle\!\langle f,g \rangle\!\rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) dx.$$

${\bf Orthogonality} \implies {\bf linear \ independence}$

Theorem Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are nonzero vectors that form an orthogonal set. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Proof: Suppose $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \cdots + t_k\mathbf{v}_k = \mathbf{0}$ for some $t_1, t_2, \dots, t_k \in \mathbb{R}$.

Then for any index $1 \le i \le k$ we have

$$\langle t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + \cdots + t_k \mathbf{v}_k, \mathbf{v}_i \rangle = \langle \mathbf{0}, \mathbf{v}_i \rangle = 0.$$

$$\implies t_1 \langle \mathbf{v}_1, \mathbf{v}_i \rangle + t_2 \langle \mathbf{v}_2, \mathbf{v}_i \rangle + \cdots + t_k \langle \mathbf{v}_k, \mathbf{v}_i \rangle = 0$$

By orthogonality, $t_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle = 0 \implies t_i = 0$.