MATH 304
Linear Algebra
Lecture 32:

Eigenvalues and eigenvectors
of a linear operator.



Eigenvalues and eigenvectors of a matrix

Definition. Let A be an nxn matrix. A number
A € R is called an eigenvalue of the matrix A if

Av = \v| for a nonzero column vector v € R".

The vector v is called an eigenvector of A
belonging to (or associated with) the eigenvalue \.

If A is an eigenvalue of A then the nullspace

N(A — Al), which is nontrivial, is called the
eigenspace of A corresponding to A\. The
eigenspace consists of all eigenvectors belonging to
the eigenvalue A plus the zero vector.



Characteristic equation

Definition. Given a square matrix A, the equation
det(A — A/) = 0 is called the characteristic
equation of A.

Eigenvalues \ of A are roots of the characteristic
equation.

If Ais an nxn matrix then p(\) = det(A— \/) is a
polynomial of degree n. It is called the
characteristic polynomial of A.

Theorem Any nxn matrix has at most n
eigenvalues.



Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector spaceand L: V — V
be a linear operator. A number A is called an
eigenvalue of the operator L if |L(v) = Av| for a
nonzero vector v € V. The vector v is called an
eigenvector of L associated with the eigenvalue \.

(If V is a functional space then eigenvectors are also
called eigenfunctions.)

If V =" then the linear operator L is given by
L(x) = Ax, where A is an nxn matrix.

In this case, eigenvalues and eigenvectors of the
operator L are precisely eigenvalues and
eigenvectors of the matrix A.



Suppose L:V — V is a linear operator on a
finite-dimensional vector space V.

Let ug,up,...,u, be abasisfor Vand g:V — R"” be the
corresponding coordinate mapping. Let A be the matrix of L
with respect to this basis. Then

L(v) =Av <= Ag(v) = Ag(v).

Hence the eigenvalues of L coincide with those of the matrix
A. Moreover, the associated eigenvectors of A are coordinates
of the eigenvectors of L.

Definition. The characteristic polynomial
p(A) = det(A — Al) of the matrix A is called the
characteristic polynomial of the operator L.

Then eigenvalues of L are roots of its characteristic
polynomial.



Theorem. The characteristic polynomial of the
operator L is well defined. That is, it does not
depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a
different basis vi,vs,...,v,. Then A= UBU!,
where U is the transition matrix from the basis
Vi,...,V, to uy,...,u,. We have to show that
det(A— \l) =det(B — Al) forall A € R. We
obtain
det(A — M) = det(UBU! — \I)

= det(UBU‘1 — U()\I)U_l) = det(U(B — )\I)U_l)

= det(U) det(B — A) det(U™1) = det(B — \).



Eigenspaces

Let L:V — V be a linear operator.
For any A € R, let V) denotes the set of all
solutions of the equation L(x) = Ax.

Then V), is a subspace of V since V) is the kernel
of a linear operator given by x — L(x) — Ax.

V\ minus the zero vector is the set of all
eigenvectors of L associated with the eigenvalue .
In particular, A € R is an eigenvalue of L if and
only if V, # {0}.

If V) # {0} then it is called the eigenspace of L
corresponding to the eigenvalue .



Example. V = C>*(R), D:V — V, Df =f"

A function f € C®(R) is an eigenfunction of the
operator D belonging to an eigenvalue A if

f'(x) = Mf(x) forall x € R.

It follows that f(x) = ce™, where c is a nonzero
constant.

Thus each A € R is an eigenvalue of D.
The corresponding eigenspace is spanned by e**.



Example. V = C>®(R), L:V =V, Lf=f".

Lf = Af < f"(x) = M(x) =0 forall x€R.

It follows that each A € R is an eigenvalue of L and
the corresponding eigenspace V) is two-dimensional.
Note that L=D?, hence Df = uf = Lf = p?f.

If A >0 then V), = Span(e, e ), where
=

If A <0 then V) = Span(sin(ux), cos(ux)), where
TERVESY

If A =0 then V), = Span(1,x).



Let V be a vector space and L: V — V be a linear
operator.

Proposition 1 If v € V is an eigenvector of the
operator L then the associated eigenvalue is unique.

Proof: Suppose that L(v) = A;v and L(v) = Apv. Then
AMV=Xv = (M1 —XQv=0 = M — X =0 = )\ =\,

Proposition 2 Suppose v; and v, are eigenvectors
of L associated with different eigenvalues A\; and \,.
Then v; and v, are linearly independent.

Proof: For any scalar t # 0 the vector tv; is also an
eigenvector of L associated with the eigenvalue A\;. Since

A2 # Ap, it follows that v, # tvy;. That is, v, is not a scalar
multiple of vy. Similarly, v; is not a scalar multiple of v,.



Let L:V — V be a linear operator.

Proposition 3 If vy, v, and v3 are eigenvectors of
L associated with distinct eigenvalues A1, A\, and
A3, then they are linearly independent.
Proof: Suppose that t;v; + tovs + t3v3 = 0 for some
t1, t,t3 € R. Then
L(tyvy + tvp + t3v3) = 0,
tiL(vy) + toL(v2) + t3L(v3) =0,
tiA1vy + b Aavs + t3Azvs = 0.

It follows that

t1A1V1 + tAavo + t3Asvs — A3(tvy + tovo + tsv3) = 0

= t1(A1 — M3)v1 + B(Aa — A3)va = 0.

By the above, v; and v, are linearly independent.
Hence ti(A1 —A3) =t(M—X3) =0 = t; =1 =0
Then t3 =0 as well.



Theorem If vy, vy, ..., v, are eigenvectors of a
linear operator L associated with distinct
eigenvalues A1, Ao, ..., Ak, then vy, vy, ... v, are
linearly independent.

Corollary 1 If A\, Ay, ..., A\ are distinct real
numbers, then the functions e’*, e’ ... eM* are
linearly independent.

Proof: Consider a linear operator D : C*(R) — C>*(R)
given by Df = f'. Then e’*, ... eMX are eigenfunctions of

D associated with distinct eigenvalues Ay, ..., . By the
theorem, the eigenfunctions are linearly independent.



Corollary 2 If vq,v,,..., v, are eigenvectors of a
matrix A associated with distinct eigenvalues

A1, Ao, ..., Ak, then vi, vy, ... v, are linearly
independent.

Corollary 3 Let A be an nxn matrix such that the
characteristic equation det(A — A/) =0 has n
distinct real roots. Then R” has a basis consisting
of eigenvectors of A.

Proof: Let A1, \»,..., A, be distinct real roots of the
characteristic equation. Any J\; is an eigenvalue of A, hence
there is an associated eigenvector v;. By Corollary 2, vectors

Vi,Vo,...,V, are linearly independent. Therefore they form a
basis for R".



