
MATH 304

Linear Algebra

Lecture 37:
Orthogonal matrices (continued).

Rigid motions.
Rotations in space.



Orthogonal matrices

Definition. A square matrix A is called orthogonal
if AAT = ATA = I , i.e., AT = A−1.

Theorem 1 If A is an n×n orthogonal matrix, then

(i) columns of A form an orthonormal basis for Rn;
(ii) rows of A also form an orthonormal basis for Rn.

Idea of the proof: Entries of matrix ATA are dot products of
columns of A. Entries of AAT are dot products of rows of A.

Theorem 2 If A is an n×n orthogonal matrix,

then (i) A is diagonalizable in the complexified
vector space Cn; (ii) all eigenvalues λ of A satisfy

|λ| = 1.



Example. Aφ =

(

cosφ − sinφ
sinφ cosφ

)

, φ ∈ R.

• AφAψ = Aφ+ψ

• A−1

φ = A−φ = AT
φ

• Aφ is orthogonal

• Eigenvalues: λ1 = cosφ+ i sinφ = e iφ,
λ2 = cosφ− i sinφ = e−iφ.

• Associated eigenvectors: v1 = (1,−i),
v2 = (1, i).

• λ2 = λ1 and v2 = v1.

• Vectors 1√
2
v1 and 1√

2
v2 form an orthonormal

basis for C2.



Consider a linear operator L : Rn → Rn, L(x) =Ax,

where A is an n×n matrix.

Theorem The following conditions are equivalent:

(i) ‖L(x)‖ = ‖x‖ for all x ∈ Rn;

(ii) L(x) · L(y) = x · y for all x, y ∈ Rn;

(iii) the transformation L preserves distance between points:
‖L(x)− L(y)‖ = ‖x− y‖ for all x, y ∈ Rn;

(iv) L preserves length of vectors and angle between vectors;

(v) the matrix A is orthogonal;

(vi) the matrix of L relative to any orthonormal basis is
orthogonal;

(vii) L maps some orthonormal basis for Rn to another
orthonormal basis;

(viii) L maps any orthonormal basis for Rn to another
orthonormal basis.



Rigid motions

Definition. A transformation f : Rn → R
n is called

an isometry (or a rigid motion) if it preserves

distances between points: ‖f (x)− f (y)‖ = ‖x− y‖.
Examples. • Translation: f (x) = x+ x0, where
x0 is a fixed vector.

• Isometric linear operator: f (x) = Ax, where A

is an orthogonal matrix.

• If f1 and f2 are two isometries, then the
composition f2◦f1 is also an isometry.

Theorem Any isometry f : Rn → Rn can be

represented as f (x) = Ax+ x0, where x0 ∈ R
n and

A is an orthogonal matrix.



Suppose L : Rn → Rn is a linear isometric operator.

Theorem There exists an orthonormal basis for Rn

such that the matrix of L relative to this basis has a
diagonal block structure











D±1 O . . . O

O R1 . . . O
...

... . . . ...
O O . . . Rk











,

where D±1 is a diagonal matrix whose diagonal

entries are equal to 1 or −1, and

Rj =

(

cosφj − sinφj

sinφj cosφj

)

, φj ∈ R.



Classification of linear isometries in R2:

(

cosφ − sinφ
sinφ cosφ

) (

−1 0
0 1

)

rotation reflection
about the origin in a line

Determinant: 1 −1

Eigenvalues: e iφ and e−iφ −1 and 1



Classification of linear isometries in R
3:

A =





1 0 0
0 cosφ − sinφ
0 sinφ cosφ



, B =





−1 0 0
0 1 0
0 0 1



,

C =





−1 0 0
0 cosφ − sinφ

0 sinφ cosφ



.

A = rotation about a line; B = reflection in a
plane; C = rotation about a line combined with

reflection in the orthogonal plane.

detA = 1, detB = detC = −1.

A has eigenvalues 1, e iφ, e−iφ. B has eigenvalues

−1, 1, 1. C has eigenvalues −1, e iφ, e−iφ.



Example. Consider a linear operator L : R3 → R3 that acts
on the standard basis as follows: L(e1) = e2, L(e2) = e3,
L(e3) = −e1.

L maps the standard basis to another orthonormal basis, which
implies that L is a rigid motion. The matrix of L

relative to the standard basis is A =





0 0 −1
1 0 0
0 1 0



.

It is orthogonal, which is another proof that L is isometric.

It follows from the classification that the operator L is either a
rotation about an axis, or a reflection in a plane, or the
composition of a rotation about an axis with the reflection in
the plane orthogonal to the axis.

detA = − 1 < 0 so that L reverses orientation. Therefore L

is not a rotation. Further, A2 6= I so that L2 is not the
identity map. Therefore L is not a reflection.



Hence L is a rotation about an axis composed with the
reflection in the orthogonal plane. Then there exists an
orthonormal basis for R3 such that the matrix of the operator
L relative to that basis is





−1 0 0
0 cosφ − sinφ
0 sinφ cos φ



,

where φ is the angle of rotation. Note that the latter matrix
is similar to the matrix A. Similar matrices have the same
trace (since similar matrices have the same characteristic
polynomial and the trace is one of its coefficients). Therefore
trace(A) = −1 + 2 cosφ. On the other hand, trace(A) = 0.
Hence −1 + 2 cosφ = 0. Then cosφ = 1/2 so that φ = 60o.

The axis of rotation consists of vectors v such that Av = −v.
In other words, this is the eigenspace of A associated to the
eigenvalue −1. One can find that the eigenspace is spanned
by the vector (1,−1, 1).



Rotations in space

If the axis of rotation is oriented, we can say about
clockwise or counterclockwise rotations (with

respect to the view from the positive semi-axis).



Counterclockwise rotations about coordinate axes





cos θ − sin θ 0
sin θ cos θ 0
0 0 1









cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ









1 0 0
0 cos θ − sin θ
0 sin θ cos θ







Problem. Find the matrix of the rotation by 90o

about the line spanned by the vector a = (1, 2, 2).
The rotation is assumed to be counterclockwise
when looking from the tip of a.

B =





1 0 0

0 0 −1
0 1 0



 is the matrix of (counterclockwise)
rotation by 90o about the x-axis.

We need to find an orthonormal basis v1, v2, v3 such that v1
points in the same direction as a. Also, the basis v1, v2, v3
should obey the same hand rule as the standard basis. Then
B will be the matrix of the given rotation relative to the basis
v1, v2, v3.



Let U denote the transition matrix from the basis

v1, v2, v3 to the standard basis (columns of U are
vectors v1, v2, v3). Then the desired matrix is

A = UBU−1.

Since v1, v2, v3 is going to be an orthonormal basis,
the matrix U will be orthogonal. Then U−1 = UT

and A = UBUT .

Remark. The basis v1, v2, v3 obeys the same hand
rule as the standard basis if and only if detU > 0.



Hint. Vectors a = (1, 2, 2), b = (−2,−1, 2), and

c = (2,−2, 1) are orthogonal.

We have |a| = |b| = |c| = 3, hence v1 =
1

3
a,

v2 =
1

3
b, v3 =

1

3
c is an orthonormal basis.

Transition matrix: U = 1

3





1 −2 2

2 −1 −2
2 2 1



.

detU = 1

27

∣

∣

∣

∣

∣

∣

1 −2 2
2 −1 −2
2 2 1

∣

∣

∣

∣

∣

∣

= 1

27
· 27 = 1.

(In the case detU = −1, we would change v3 to −v3,
or change v2 to −v2, or interchange v2 and v3.)



A = UBUT

= 1

3





1 −2 2

2 −1 −2
2 2 1









1 0 0

0 0 −1
0 1 0



 · 1

3





1 2 2

−2 −1 2
2 −2 1





= 1

9





1 2 2
2 −2 1

2 1 −2









1 2 2
−2 −1 2

2 −2 1





= 1

9





1 −4 8

8 4 1
−4 7 4



.


