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Lecture 39:

Markov chains.



Stochastic process

Stochastic (or random) process is a sequence of

experiments for which the outcome at any stage
depends on a chance.

Simple model:
• a finite number of possible outcomes (called

states);
• discrete time

Let S denote the set of the states. Then the

stochastic process is a sequence s0, s1, s2, . . . ,
where all sn ∈ S depend on chance.

How do they depend on chance?



Bernoulli scheme

Bernoulli scheme is a sequence of independent

random events.

That is, in the sequence s0, s1, s2, . . . any outcome
sn is independent of the others.

For any integer n ≥ 0 we have a probability
distribution p(n) on S . This means that each state

s ∈ S is assigned a value p
(n)
s ≥ 0 so that

∑

s∈S p
(n)
s = 1. Then the probability of the event

sn = s is p
(n)
s .

The Bernoulli scheme is called stationary if the

probability distributions p(n) do not depend on n.



Examples of Bernoulli schemes:

• Coin tossing
2 states: heads and tails. Equal probabilities: 1/2.

• Die rolling
6 states. Uniform probability distribution: 1/6 each.

• Lotto Texas
Any state is a 6-element subset of the set
{1, 2, . . . , 54}. The total number of states is

25, 827, 165. Uniform probability distribution.



Markov chain

Markov chain is a stochastic process with discrete

time such that the probability of the next outcome
may depend only on the previous outcome.

Let S = {1, 2, . . . , k}. The Markov chain is

determined by transition probabilities p
(t)
ij ,

1 ≤ i , j ≤ k , t ≥ 0, and by the initial probability

distribution qi , 1 ≤ i ≤ k .

Here qi is the probability of the event s0 = i , and
p
(t)
ij is the conditional probability of the event

st+1 = j provided that st = i . By construction,
p
(t)
ij , qi ≥ 0,

∑

i qi = 1, and
∑

j p
(t)
ij = 1.



We shall assume that the Markov chain is

time-independent, i.e., transition probabilities do
not depend on time: p

(t)
ij = pij .

Then a Markov chain on S = {1, 2, . . . , k} is

determined by a probability vector

x0 = (q1, q2, . . . , qk) ∈ R
k and a k×k transition

matrix P = (pij). The entries in each row of P
add up to 1.

Let s0, s1, s2, . . . be the Markov chain. Then the

vector x0 determines the probability distribution of
the initial state s0.

Problem. Find the (unconditional) probability

distribution for any sn.



Example: random walk

1

2

3

Transition matrix: P =





0 1/2 1/2

0 1/2 1/2
1 0 0







Problem. Find the (unconditional) probability

distribution for any sn, n ≥ 1.

The probability distribution of sn−1 is given by a

probability vector xn−1 = (a1, . . . , ak). The
probability distribution of sn is given by a vector
xn = (b1, . . . , bk).

We have

bj = a1p1j + a2p2j + · · ·+ akpkj , 1 ≤ j ≤ k .

That is,

(b1, . . . , bk) = (a1, . . . , ak)





p11 . . . p1k
... . . . ...

pk1 . . . pkk



.



xn = xn−1P =⇒ xTn = (xn−1P)
T = PTxTn−1.

Thus xTn = QxTn−1, where Q = PT and the vectors
are regarded as row vectors.

Then xTn = QxTn−1 = Q(QxTn−2) = Q2xTn−2.

Similarly, xTn = Q3xTn−3, and so on.

Finally, xTn = QnxT0 .



Example. Very primitive weather model:

Two states: “sunny” (1) and “rainy” (2).

Transition matrix: P =

(

0.9 0.1
0.5 0.5

)

.

Suppose that x0 = (1, 0) (sunny weather initially).

Problem. Make a long-term weather prediction.

The probability distribution of weather for day n is

given by the vector xTn = QnxT0 , where Q = PT .

To compute Qn, we need to diagonalize the matrix

Q =

(

0.9 0.5

0.1 0.5

)

.



det(Q − λI ) =

∣

∣

∣

∣

0.9− λ 0.5
0.1 0.5− λ

∣

∣

∣

∣

=

= λ2 − 1.4λ+ 0.4 = (λ− 1)(λ− 0.4).

Two eigenvalues: λ1 = 1, λ2 = 0.4.

(Q − I )v = 0 ⇐⇒

(

−0.1 0.5

0.1 −0.5

)(

x

y

)

=

(

0

0

)

⇐⇒ (x , y) = t(5, 1), t ∈ R.

(Q − 0.4I )v = 0 ⇐⇒

(

0.5 0.5

0.1 0.1

)(

x

y

)

=

(

0

0

)

⇐⇒ (x , y) = t(−1, 1), t ∈ R.

v1 = (5, 1)T and v2 = (−1, 1)T are eigenvectors of

Q belonging to eigenvalues 1 and 0.4, respectively.



xT0 = αv1 + βv2 ⇐⇒

{

5α− β = 1
α + β = 0

⇐⇒

{

α = 1/6
β = −1/6

Now xTn = QnxT0 = Qn(αv1 + βv2) =

= α(Qnv1) + β(Qnv2) = αv1 + (0.4)nβv2,

which converges to the vector αv1 = (5/6, 1/6)T

as n → ∞.

The vector x∞ = (5/6, 1/6) gives the limit

distribution. Also, it is a steady-state vector.

Remarks. In this example, the limit distribution does not
depend on the initial distribution, but it is not always so.
However 1 is always an eigenvalue of the matrix P (and hence
Q) since P (1, 1, . . . , 1)T = (1, 1, . . . , 1)T .


